Copper doping effect on the preparation of efficient heterogeneous Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate
-
摘要: 以硫化鎳精礦為原料,采用共沉淀–煅燒法成功制備出Cu摻雜尖晶石鐵氧體(Ni, Mg, Cu)Fe2O4異相類Fenton催化劑。利用X射線衍射(XRD)、掃描電子顯微鏡(SEM)及X射線光電子能譜(XPS)等手段系統研究了Cu摻雜量對所制備產物微觀結構、形貌及催化性能的影響;確立了最優催化體系為光助類Fenton催化體系“(Ni, Mg, Cu)Fe2O4催化劑/H2O2/可見光”,揭示了Cu摻雜對(Mg, Ni)Fe2O4催化活性的增強機制。結果表明:在選定的實驗條件下,制備得到的產物均為純相立方尖晶石鐵氧體。當Ni與Cu摩爾比為1∶1時,合成的(Ni, Mg, Cu)Fe2O4在可見光照180 min條件下對質量濃度為10 mg?L?1的羅丹明B(RhB)溶液的降解率可達94.5%。究其主要原因為:隨著Cu摻雜量的增加,占據(Ni, Mg, Cu)Fe2O4八面體位的Fe3+和Cu2+的相對含量增加,即裸露于鐵氧體表面的Fe3+和Cu2+數量增多,以及兩者的協同作用,加速了羥基自由基(·OH)反應的發生,最終使得RhB溶液的降解效率從73.1%提高至94.5%。
-
關鍵詞:
- 硫化鎳精礦 /
- Cu摻雜量 /
- 尖晶石鐵氧體(Ni,Mg,Cu)Fe2O4 /
- 異相類Fenton催化劑 /
- 煅燒
Abstract: Organic contaminants such as dyes and antibiotics have become the focus of water treatment research in recent years due to their complex composition, high toxicity, and difficulty in biodegradation. Spinel ferrite heterogeneous Fenton-like catalysts, with a chemical formula of MFe2O4 (MFe2O4, M is a divalent metallic cation or its combination, and the divalent cation is generally Ni, Zn, Mn, Co, Cu, and Mg, etc.), have attracted much attention because of their excellent structural stability and good magnetic recovery performance. However, the catalytic activity of these catalysts is not ideal and almost all the reported catalysts are synthesized by pure chemical reagents, which restrict their industrial application. Therefore, the preparation of highly efficient heterogeneous Fenton-like catalysts with low cost becomes the key to the treatment of refractory organic wastewater. In this study, copper-doped spinel ferrite (Ni, Mg, Cu)Fe2O4 was successfully synthesized from nickel sulfide concentrate by a coprecipitation–calcination method. The effect of copper doping concentration on the structure, micro-morphology, and catalytic performance of as-prepared samples was systematically investigated by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The optimal catalytic system was established as the photo-assisted Fenton-like catalytic system, “(Ni, Mg, Cu)Fe2O4 catalyst/H2O2/visible light”, and the enhancement mechanism of copper doping on the catalytic activity of (Mg, Ni)Fe2O4 was revealed. Results showed that all formed products were pure spinel ferrites under the selected synthesis conditions. With 1∶1 molar ratio of Ni to Cu, the formed (Ni, Mg, Cu)Fe2O4 catalyst achieved 94.5% degradation efficiency for 10-mg?L?1 RhB solution under visible light irradiation for 180 min. This observed behavior may be ascribed mainly to the increased relative contents of Fe3+ and Cu2+ ions at octahedral site. Hydroxyl radical (·OH) reaction accelerated due to increased amount of Fe3+ and Cu2+ exposed on the surface and enhanced synergetic effect between Fe3+ and Cu2+. This improved the degradation efficiency of RhB solution from 73.1% to 94.5%. -
圖 2 樣品的XRD圖譜。(a)不同Cu摻雜量合成的樣品的XRD圖譜;(b)(311)晶面最強峰對應2θ角度偏移的放大圖
Figure 2. XRD patterns of samples: (a) XRD patterns of Cu-doped samples; (b) enlarged views of 2θ angle shift corresponding to the strongest peaks of the (311) crystal planes
S1—undoped Cu sample; S2—MNi∶Cu=1∶0.6 sample; S3— MNi∶Cu=1∶1 sample
圖 4 樣品的XPS圖譜。(a)不同Cu摻雜量鐵氧體的XPS全譜圖;(b)Fe 2p的高分辨圖譜;(c)Mg 2p的高分辨圖譜;(d)Ni 2p的高分辨圖譜;(e)Cu 2p的高分辨圖譜
Figure 4. XPS spectra of samples: (a) full XPS spectra of copper-doped ferrites; (b) Fe 2p high resolution spectra; (c) Mg 2p high resolution spectra; (d) Ni 2p high resolution spectra; (e) Cu 2p high resolution spectra
S1—undoped Cu sample; S2—MNi∶Cu=1∶0.6 sample; S3—MNi∶Cu = 1∶1 sample
圖 5 降解曲線及熒光光譜圖。(a)不同催化反應體系中RhB溶液的降解曲線;(b)Ni0.63Mg0.30Cu0.07Fe2O4/H2O2/可見光催化體系捕獲·OH產生2-羥基對苯二甲酸熒光光譜圖
Figure 5. Degradation curves and fluorescence spectra: (a) the degradation curves of RhB solutions in different catalytic reaction systems; (b) fluorescence spectra of 2-hydroxyterephthalic acid produced by the catalytic system of Ni0.63Mg0.30Cu0.07Fe2O4/H2O2/vis capturing ·OH radicals
表 1 X射線熒光光譜分析測定硫化鎳精礦主要化學成分
Table 1. Chemical compositions of nickel sulfide concentrate analyzed by XRF
% Components Fe S Si Ni Mg Cu Al Ca Co Mass fraction 14.06 12.12 7.88 6.28 6.25 1.37 1.14 1.09 0.16 Components K Ti Na Cr Zn Mn Pb Cl O and others Mass fraction 0.11 0.08 0.10 0.07 0.08 0.04 0.03 0.02 49.12 表 2 ICP-AES測定硫化鎳精礦浸出液中主要金屬元素含量
Table 2. Main metal elements in the leaching solution of nickel sulfide concentrate by ICP-AES analysis
Concentration Fe Ni Mg Cu Co Al Ca Ti K Cr Zn Mn Mass concentration/(g?L?1) 40.84 3.305 0.965 0.698 0.023 0.210 0.275 0.005 0.016 0.009 0.009 0.007 Molar concentration/(mol?L?1) 0.729 0.056 0.040 0.011 0.001 0.008 0.007 <0.001 <0.001 <0.001 <0.001 <0.001 表 3 不同Cu含量(Ni,Mg,Cu)Fe2O4的化學式和晶胞參數的計算結果
Table 3. Chemical formula and unit cell parameters of (Ni,Mg,Cu)Fe2O4 with different Cu contents
MNi∶Cu (molar ratio) Chemical formula a/nm Undoped Ni0.63Mg0.30Cu0.07Fe2O4 0.4285 1∶0.6 Ni0.48Mg0.21Cu0.31Fe2O4 0.4287 1∶1 Ni0.24Mg0.15Cu0.61Fe2O4 0.4289 www.77susu.com -
參考文獻
[1] Mudd G M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol Rev, 2010, 38(1-2): 9 doi: 10.1016/j.oregeorev.2010.05.003 [2] Elshkaki A, Reck B K, Graedel T E. Anthropogenic nickel supply, demand, and associated energy and water use. Resour Conserv Recycl, 2017, 125: 300 doi: 10.1016/j.resconrec.2017.07.002 [3] Mu W N, Huang Z P, Xin H X, et al. Extraction of copper and nickel from low-grade nickel sulfide ore by low-temperature roasting, selective decomposition and water-leaching process. JOM, 2019, 71(12): 4647 doi: 10.1007/s11837-019-03740-0 [4] Zhao K L, Yan W, Wang X H, et al. Effect of a novel phosphate on the flotation of serpentine-containing copper-nickel sulfide ore. Miner Eng, 2020, 150: 106276 doi: 10.1016/j.mineng.2020.106276 [5] Elkacmi R, Bennajah M. Advanced oxidation technologies for the treatment and detoxification of olive mill wastewater: a general review. J Water Reuse Desalin, 2019, 9(4): 463 doi: 10.2166/wrd.2019.033 [6] Tian Q W, Ran M, Fang G G, et al. ZnAl2O4/BiPO4 composites as a heterogeneous catalyst for photo-Fenton treatment of textile and pulping wastewater. Sep Purif Technol, 2020, 239: 116574 doi: 10.1016/j.seppur.2020.116574 [7] Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Appl Catal B:Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003 [8] Zan J, Song H, Zuo S Y, et al. MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the elimination of toxic organics in wastewater. J Cleaner Prod, 2020, 246: 118971 doi: 10.1016/j.jclepro.2019.118971 [9] Wang N, Zhu L H, Wang D L, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem, 2010, 17(3): 526 doi: 10.1016/j.ultsonch.2009.11.001 [10] Roonasi P, Nezhad A Y. A comparative study of a series of ferrite nanoparticles as heterogeneous catalysts for phenol removal at neutral pH. Mater Chem Phys, 2016, 172: 143 doi: 10.1016/j.matchemphys.2016.01.054 [11] Wang G, Zhao D Y, Kou F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): Kinetics, mechanism and degradation pathway. Chem Eng J, 2018, 351: 747 doi: 10.1016/j.cej.2018.06.033 [12] Zhong Y H, Liang X L, Tan W, et al. A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. J Mol Catal A:Chem, 2013, 372: 29 doi: 10.1016/j.molcata.2013.01.038 [13] Sharma R, Bansal S, Singhal S. Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv, 2015, 5(8): 6006 doi: 10.1039/C4RA13692F [14] Huang X L, Xu C, Ma J P, et al. Ionothermal synthesis of Cu-doped Fe3O4 magnetic nanoparticles with enhanced peroxidase-like activity for organic wastewater treatment. Adv Powder Technol, 2018, 29(3): 796 doi: 10.1016/j.apt.2017.12.025 [15] Jacobs J P, Maltha A, Reintjes J G H, et al. The surface of catalytically active spinels. J Catal, 1994, 147(1): 294 doi: 10.1006/jcat.1994.1140 [16] López-Ramón M V, Alvarez M A, Moreno-Castilla C, et al. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. J Colloid Interface Sci, 2018, 511: 193 doi: 10.1016/j.jcis.2017.09.117 [17] Sun Y J, Diao Y F, Wang H G, et al. Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co)Fe2O4 from low nickel matte. Ceram Int, 2017, 43(18): 16474 doi: 10.1016/j.ceramint.2017.09.029 [18] Han X, Yan Z K, Chen T, et al. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite. Chin J Eng, 2019, 41(5): 600韓星, 閆治開, 陳婷, 等. 從腐泥土型紅土鎳礦制備共摻雜MgFe2O4物相轉化規律及催化性能. 工程科學學報, 2019, 41(5):600 [19] Chen G J, Wang H G, Zhang M, et al. High efficient leaching of Ni, Cu and Co from low nickel matte. Chin J Nonferrous Met, 2017, 27(9): 1936陳光炬, 王會剛, 張梅, 等. 從低冰鎳中高效浸提Ni、Cu、Co. 中國有色金屬學報, 2017, 27(9):1936 [20] Gao J M, Zhang M, Guo M. Direct fabrication and characterization of metal doped magnesium ferrites from treated laterite ores by the solid reaction method. Ceram Int, 2015, 41(6): 8155 doi: 10.1016/j.ceramint.2015.03.030 [21] Feng Y, Liao C Z, Shih K. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide. Chemosphere, 2016, 154: 573 doi: 10.1016/j.chemosphere.2016.04.019 [22] Yu D Y, Ni H G, Wang L L, et al. Nanoscale-confined precursor of CuFe2O4 mediated by hyperbranched polyamide as an unusual heterogeneous Fenton catalyst for efficient dye degradation. J Clean Prod, 2018, 186: 146 doi: 10.1016/j.jclepro.2018.03.134 [23] Vinosha P A, Xavier B, Krishnan S, et al. Investigation on zinc substituted highly porous improved catalytic activity of NiFe2O4 nanocrystal by co-precipitation method. Mater Res Bull, 2018, 101: 190 doi: 10.1016/j.materresbull.2018.01.026 [24] Yan Z K, Gao J M, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv, 2015, 5(112): 92778 doi: 10.1039/C5RA17145H [25] Zhang L H, Zhu J, Jiang X R, et al. Influence of nature of precursors on the formation and structure of Cu?Ni?Cr mixed oxides from layered double hydroxides. J Phys Chem Solids, 2006, 67(8): 1678 doi: 10.1016/j.jpcs.2006.03.002 [26] Zhao Y L, Lin C P, Bi H J, et al. Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light. Appl Surf Sci, 2017, 392: 701 doi: 10.1016/j.apsusc.2016.09.099 [27] Li Y, Chen D, Fan S S, et al. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J Taiwan Inst Chem Eng, 2019, 96: 185 doi: 10.1016/j.jtice.2018.11.006 [28] Chen H B, Liu W X, Qin Z Z. ZnO/ZnFe2O4 nanocomposite as abroad-spectrum photo-Fenton-like photocatalyst with near-infrared activity. Catal Sci Technol, 2017, 7(11): 2236 doi: 10.1039/C7CY00308K [29] Guo X J, Wang K B, Xu Y N. Tartaric acid enhanced CuFe2O4-catalyzed heterogeneous photo-Fenton-like degradation of methylene blue. Mater Sci Eng B, 2019, 245: 75 doi: 10.1016/j.mseb.2019.05.015 [30] Wang Y B, Zhao H Y, Li M F, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B:Environ, 2014, 147: 534 doi: 10.1016/j.apcatb.2013.09.017 [31] Guo X J, Wang K B, Li D, et al. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl Surf Sci, 2017, 420: 792 doi: 10.1016/j.apsusc.2017.05.178 [32] Qin Q D, Liu Y H, Li X C, et al. Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O4. RSC Adv, 2018, 8(2): 1071 doi: 10.1039/C7RA12488K -