<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Cu摻雜對硫化鎳精礦制備高效異相類Fenton催化劑(Ni, Mg, Cu)Fe2O4的影響

劉雅賢 陳婷 韓星 張梅 郭敏

劉雅賢, 陳婷, 韓星, 張梅, 郭敏. Cu摻雜對硫化鎳精礦制備高效異相類Fenton催化劑(Ni, Mg, Cu)Fe2O4的影響[J]. 工程科學學報, 2021, 43(7): 935-945. doi: 10.13374/j.issn2095-9389.2020.06.18.002
引用本文: 劉雅賢, 陳婷, 韓星, 張梅, 郭敏. Cu摻雜對硫化鎳精礦制備高效異相類Fenton催化劑(Ni, Mg, Cu)Fe2O4的影響[J]. 工程科學學報, 2021, 43(7): 935-945. doi: 10.13374/j.issn2095-9389.2020.06.18.002
LIU Ya-xian, CHEN Ting, HAN Xing, ZHANG Mei, GUO Min. Copper doping effect on the preparation of efficient heterogeneous Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate[J]. Chinese Journal of Engineering, 2021, 43(7): 935-945. doi: 10.13374/j.issn2095-9389.2020.06.18.002
Citation: LIU Ya-xian, CHEN Ting, HAN Xing, ZHANG Mei, GUO Min. Copper doping effect on the preparation of efficient heterogeneous Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate[J]. Chinese Journal of Engineering, 2021, 43(7): 935-945. doi: 10.13374/j.issn2095-9389.2020.06.18.002

Cu摻雜對硫化鎳精礦制備高效異相類Fenton催化劑(Ni, Mg, Cu)Fe2O4的影響

doi: 10.13374/j.issn2095-9389.2020.06.18.002
基金項目: 國家自然科學基金資助項目(U1810205)
詳細信息
    通訊作者:

    E-mail:guomin@ustb.edu.cn

  • 中圖分類號: TF803.21;TB34

Copper doping effect on the preparation of efficient heterogeneous Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate

More Information
  • 摘要: 以硫化鎳精礦為原料,采用共沉淀–煅燒法成功制備出Cu摻雜尖晶石鐵氧體(Ni, Mg, Cu)Fe2O4異相類Fenton催化劑。利用X射線衍射(XRD)、掃描電子顯微鏡(SEM)及X射線光電子能譜(XPS)等手段系統研究了Cu摻雜量對所制備產物微觀結構、形貌及催化性能的影響;確立了最優催化體系為光助類Fenton催化體系“(Ni, Mg, Cu)Fe2O4催化劑/H2O2/可見光”,揭示了Cu摻雜對(Mg, Ni)Fe2O4催化活性的增強機制。結果表明:在選定的實驗條件下,制備得到的產物均為純相立方尖晶石鐵氧體。當Ni與Cu摩爾比為1∶1時,合成的(Ni, Mg, Cu)Fe2O4在可見光照180 min條件下對質量濃度為10 mg?L?1的羅丹明B(RhB)溶液的降解率可達94.5%。究其主要原因為:隨著Cu摻雜量的增加,占據(Ni, Mg, Cu)Fe2O4八面體位的Fe3+和Cu2+的相對含量增加,即裸露于鐵氧體表面的Fe3+和Cu2+數量增多,以及兩者的協同作用,加速了羥基自由基(·OH)反應的發生,最終使得RhB溶液的降解效率從73.1%提高至94.5%。

     

  • 圖  1  硫化鎳精礦的XRD圖譜

    Figure  1.  XRD pattern of nickel sulfide concentrate

    圖  2  樣品的XRD圖譜。(a)不同Cu摻雜量合成的樣品的XRD圖譜;(b)(311)晶面最強峰對應2θ角度偏移的放大圖

    Figure  2.  XRD patterns of samples: (a) XRD patterns of Cu-doped samples; (b) enlarged views of 2θ angle shift corresponding to the strongest peaks of the (311) crystal planes

    S1—undoped Cu sample; S2—MNi∶Cu=1∶0.6 sample; S3— MNi∶Cu=1∶1 sample

    圖  3  不同Cu摻雜量合成樣品的SEM圖及粒徑統計分布圖。(a)和(d)未摻雜Cu的樣品;(b)和(e)MNi∶Cu=1∶0.6的樣品;(c)和(f)MNi∶Cu=1∶1的樣品

    Figure  3.  SEM images and particle size distributions of Cu-doped samples: (a) and (d) undoped Cu sample; (b) and (e) MNi∶Cu=1∶0.6 sample; (c) and (f) MNi∶Cu=1∶1 sample

    圖  4  樣品的XPS圖譜。(a)不同Cu摻雜量鐵氧體的XPS全譜圖;(b)Fe 2p的高分辨圖譜;(c)Mg 2p的高分辨圖譜;(d)Ni 2p的高分辨圖譜;(e)Cu 2p的高分辨圖譜

    Figure  4.  XPS spectra of samples: (a) full XPS spectra of copper-doped ferrites; (b) Fe 2p high resolution spectra; (c) Mg 2p high resolution spectra; (d) Ni 2p high resolution spectra; (e) Cu 2p high resolution spectra

    S1—undoped Cu sample; S2—MNi∶Cu=1∶0.6 sample; S3—MNi∶Cu = 1∶1 sample

    圖  5  降解曲線及熒光光譜圖。(a)不同催化反應體系中RhB溶液的降解曲線;(b)Ni0.63Mg0.30Cu0.07Fe2O4/H2O2/可見光催化體系捕獲·OH產生2-羥基對苯二甲酸熒光光譜圖

    Figure  5.  Degradation curves and fluorescence spectra: (a) the degradation curves of RhB solutions in different catalytic reaction systems; (b) fluorescence spectra of 2-hydroxyterephthalic acid produced by the catalytic system of Ni0.63Mg0.30Cu0.07Fe2O4/H2O2/vis capturing ·OH radicals

    圖  6  Cu摻雜量不同的催化劑降解RhB溶液的吸光度曲線。(a)未摻雜;(b)MNi∶Cu=1∶0.6;(c)MNi∶Cu=1∶1

    Figure  6.  Absorbance curves of RhB solution degraded by catalysts with different Cu doping: (a) undoped; (b) MNi∶Cu = 1∶0.6; (c) MNi∶Cu = 1∶1

    圖  7  降解曲線和動力學曲線。(a)不同Cu摻雜量的催化劑降解RhB溶液的曲線;(b)不同Cu摻雜量的催化劑降解RhB溶液的動力學特征曲線

    Figure  7.  Degradation curves and kinetic curves: (a) RhB degradation by samples with different Cu doping amounts; (b) kinetic characteristics curves of RhB degradation by samples with different Cu doping amounts

    圖  8  催化體系“(Ni,Mg,Cu)Fe2O4催化劑/H2O2/可見光”的反應機理圖

    Figure  8.  Reaction mechanism diagram of catalytic system “(Ni,Mg,Cu)Fe2O4 catalyst/H2O2/visible light”

    圖  9  不同Cu摻雜量鐵氧體中金屬離子八面體位占比圖

    Figure  9.  Percentages of metal ion octahedral positions in ferrites with different copper doping amounts

    表  1  X射線熒光光譜分析測定硫化鎳精礦主要化學成分

    Table  1.   Chemical compositions of nickel sulfide concentrate analyzed by XRF %

    ComponentsFeSSiNiMgCuAlCaCo
    Mass fraction14.0612.127.886.286.251.371.141.090.16
    ComponentsKTiNaCrZnMnPbClO and others
    Mass fraction0.110.080.100.070.080.040.030.0249.12
    下載: 導出CSV

    表  2  ICP-AES測定硫化鎳精礦浸出液中主要金屬元素含量

    Table  2.   Main metal elements in the leaching solution of nickel sulfide concentrate by ICP-AES analysis

    ConcentrationFeNiMgCuCoAlCaTiKCrZnMn
    Mass concentration/(g?L?1)40.843.3050.9650.6980.0230.2100.2750.0050.0160.0090.0090.007
    Molar concentration/(mol?L?1)0.7290.0560.0400.0110.0010.0080.007<0.001<0.001<0.001<0.001<0.001
    下載: 導出CSV

    表  3  不同Cu含量(Ni,Mg,Cu)Fe2O4的化學式和晶胞參數的計算結果

    Table  3.   Chemical formula and unit cell parameters of (Ni,Mg,Cu)Fe2O4 with different Cu contents

    MNi∶Cu (molar ratio)Chemical formulaa/nm
    UndopedNi0.63Mg0.30Cu0.07Fe2O40.4285
    1∶0.6Ni0.48Mg0.21Cu0.31Fe2O40.4287
    1∶1Ni0.24Mg0.15Cu0.61Fe2O40.4289
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mudd G M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol Rev, 2010, 38(1-2): 9 doi: 10.1016/j.oregeorev.2010.05.003
    [2] Elshkaki A, Reck B K, Graedel T E. Anthropogenic nickel supply, demand, and associated energy and water use. Resour Conserv Recycl, 2017, 125: 300 doi: 10.1016/j.resconrec.2017.07.002
    [3] Mu W N, Huang Z P, Xin H X, et al. Extraction of copper and nickel from low-grade nickel sulfide ore by low-temperature roasting, selective decomposition and water-leaching process. JOM, 2019, 71(12): 4647 doi: 10.1007/s11837-019-03740-0
    [4] Zhao K L, Yan W, Wang X H, et al. Effect of a novel phosphate on the flotation of serpentine-containing copper-nickel sulfide ore. Miner Eng, 2020, 150: 106276 doi: 10.1016/j.mineng.2020.106276
    [5] Elkacmi R, Bennajah M. Advanced oxidation technologies for the treatment and detoxification of olive mill wastewater: a general review. J Water Reuse Desalin, 2019, 9(4): 463 doi: 10.2166/wrd.2019.033
    [6] Tian Q W, Ran M, Fang G G, et al. ZnAl2O4/BiPO4 composites as a heterogeneous catalyst for photo-Fenton treatment of textile and pulping wastewater. Sep Purif Technol, 2020, 239: 116574 doi: 10.1016/j.seppur.2020.116574
    [7] Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Appl Catal B:Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003
    [8] Zan J, Song H, Zuo S Y, et al. MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the elimination of toxic organics in wastewater. J Cleaner Prod, 2020, 246: 118971 doi: 10.1016/j.jclepro.2019.118971
    [9] Wang N, Zhu L H, Wang D L, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem, 2010, 17(3): 526 doi: 10.1016/j.ultsonch.2009.11.001
    [10] Roonasi P, Nezhad A Y. A comparative study of a series of ferrite nanoparticles as heterogeneous catalysts for phenol removal at neutral pH. Mater Chem Phys, 2016, 172: 143 doi: 10.1016/j.matchemphys.2016.01.054
    [11] Wang G, Zhao D Y, Kou F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): Kinetics, mechanism and degradation pathway. Chem Eng J, 2018, 351: 747 doi: 10.1016/j.cej.2018.06.033
    [12] Zhong Y H, Liang X L, Tan W, et al. A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. J Mol Catal A:Chem, 2013, 372: 29 doi: 10.1016/j.molcata.2013.01.038
    [13] Sharma R, Bansal S, Singhal S. Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv, 2015, 5(8): 6006 doi: 10.1039/C4RA13692F
    [14] Huang X L, Xu C, Ma J P, et al. Ionothermal synthesis of Cu-doped Fe3O4 magnetic nanoparticles with enhanced peroxidase-like activity for organic wastewater treatment. Adv Powder Technol, 2018, 29(3): 796 doi: 10.1016/j.apt.2017.12.025
    [15] Jacobs J P, Maltha A, Reintjes J G H, et al. The surface of catalytically active spinels. J Catal, 1994, 147(1): 294 doi: 10.1006/jcat.1994.1140
    [16] López-Ramón M V, Alvarez M A, Moreno-Castilla C, et al. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. J Colloid Interface Sci, 2018, 511: 193 doi: 10.1016/j.jcis.2017.09.117
    [17] Sun Y J, Diao Y F, Wang H G, et al. Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co)Fe2O4 from low nickel matte. Ceram Int, 2017, 43(18): 16474 doi: 10.1016/j.ceramint.2017.09.029
    [18] Han X, Yan Z K, Chen T, et al. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite. Chin J Eng, 2019, 41(5): 600

    韓星, 閆治開, 陳婷, 等. 從腐泥土型紅土鎳礦制備共摻雜MgFe2O4物相轉化規律及催化性能. 工程科學學報, 2019, 41(5):600
    [19] Chen G J, Wang H G, Zhang M, et al. High efficient leaching of Ni, Cu and Co from low nickel matte. Chin J Nonferrous Met, 2017, 27(9): 1936

    陳光炬, 王會剛, 張梅, 等. 從低冰鎳中高效浸提Ni、Cu、Co. 中國有色金屬學報, 2017, 27(9):1936
    [20] Gao J M, Zhang M, Guo M. Direct fabrication and characterization of metal doped magnesium ferrites from treated laterite ores by the solid reaction method. Ceram Int, 2015, 41(6): 8155 doi: 10.1016/j.ceramint.2015.03.030
    [21] Feng Y, Liao C Z, Shih K. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide. Chemosphere, 2016, 154: 573 doi: 10.1016/j.chemosphere.2016.04.019
    [22] Yu D Y, Ni H G, Wang L L, et al. Nanoscale-confined precursor of CuFe2O4 mediated by hyperbranched polyamide as an unusual heterogeneous Fenton catalyst for efficient dye degradation. J Clean Prod, 2018, 186: 146 doi: 10.1016/j.jclepro.2018.03.134
    [23] Vinosha P A, Xavier B, Krishnan S, et al. Investigation on zinc substituted highly porous improved catalytic activity of NiFe2O4 nanocrystal by co-precipitation method. Mater Res Bull, 2018, 101: 190 doi: 10.1016/j.materresbull.2018.01.026
    [24] Yan Z K, Gao J M, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv, 2015, 5(112): 92778 doi: 10.1039/C5RA17145H
    [25] Zhang L H, Zhu J, Jiang X R, et al. Influence of nature of precursors on the formation and structure of Cu?Ni?Cr mixed oxides from layered double hydroxides. J Phys Chem Solids, 2006, 67(8): 1678 doi: 10.1016/j.jpcs.2006.03.002
    [26] Zhao Y L, Lin C P, Bi H J, et al. Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light. Appl Surf Sci, 2017, 392: 701 doi: 10.1016/j.apsusc.2016.09.099
    [27] Li Y, Chen D, Fan S S, et al. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J Taiwan Inst Chem Eng, 2019, 96: 185 doi: 10.1016/j.jtice.2018.11.006
    [28] Chen H B, Liu W X, Qin Z Z. ZnO/ZnFe2O4 nanocomposite as abroad-spectrum photo-Fenton-like photocatalyst with near-infrared activity. Catal Sci Technol, 2017, 7(11): 2236 doi: 10.1039/C7CY00308K
    [29] Guo X J, Wang K B, Xu Y N. Tartaric acid enhanced CuFe2O4-catalyzed heterogeneous photo-Fenton-like degradation of methylene blue. Mater Sci Eng B, 2019, 245: 75 doi: 10.1016/j.mseb.2019.05.015
    [30] Wang Y B, Zhao H Y, Li M F, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B:Environ, 2014, 147: 534 doi: 10.1016/j.apcatb.2013.09.017
    [31] Guo X J, Wang K B, Li D, et al. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl Surf Sci, 2017, 420: 792 doi: 10.1016/j.apsusc.2017.05.178
    [32] Qin Q D, Liu Y H, Li X C, et al. Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O4. RSC Adv, 2018, 8(2): 1071 doi: 10.1039/C7RA12488K
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數:  1249
  • HTML全文瀏覽量:  899
  • PDF下載量:  89
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-18
  • 網絡出版日期:  2021-01-11
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回