<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于有向權值網絡的航班運行風險傳播與控制

王巖韜 楊志遠 劉錕 謝春生

王巖韜, 楊志遠, 劉錕, 謝春生. 基于有向權值網絡的航班運行風險傳播與控制[J]. 工程科學學報, 2022, 44(1): 114-121. doi: 10.13374/j.issn2095-9389.2020.06.15.002
引用本文: 王巖韜, 楊志遠, 劉錕, 謝春生. 基于有向權值網絡的航班運行風險傳播與控制[J]. 工程科學學報, 2022, 44(1): 114-121. doi: 10.13374/j.issn2095-9389.2020.06.15.002
WANG Yan-tao, YANG Zhi-yuan, LIU Kun, XIE Chun-sheng. Flight operation risk propagation and control based on a directional-weighted complex network[J]. Chinese Journal of Engineering, 2022, 44(1): 114-121. doi: 10.13374/j.issn2095-9389.2020.06.15.002
Citation: WANG Yan-tao, YANG Zhi-yuan, LIU Kun, XIE Chun-sheng. Flight operation risk propagation and control based on a directional-weighted complex network[J]. Chinese Journal of Engineering, 2022, 44(1): 114-121. doi: 10.13374/j.issn2095-9389.2020.06.15.002

基于有向權值網絡的航班運行風險傳播與控制

doi: 10.13374/j.issn2095-9389.2020.06.15.002
基金項目: 國家自然科學基金資助項目(U1933103)
詳細信息
    通訊作者:

    E-mail:caucwyt@126.com

  • 中圖分類號: N945.24;U8;V355.2

Flight operation risk propagation and control based on a directional-weighted complex network

More Information
  • 摘要: 為了分析航班運行風險傳播過程,進而有效控制保障飛行安全,基于復雜網絡理論,首先參照民航局咨詢通告選取機組、航空器、運行環境共29個終端因素作為網絡節點,統計民航安全監察記錄,根據事件中節點關系,構建無向網絡;統計前后節點間的作用關系和發生概率,提出一種有向帶權的航班運行風險網絡;然后,引入改進感染率和改進恢復率概念,構建一種適用于航班運行風險傳播分析的改進SIR(Susceptible-infected-recovered)模型;定義感染起始范圍,最后采取多參數控制方式,大規模計算該有向帶權網絡的傳播和控制過程。結果表明:有向網的平均最短路徑為1.788,屬于小世界網絡;參照使用民航常規管控措施,有向網節點感染下降幅度可達到37.4%;對入度值排序前3或前4的節點控制后,感染節點峰值下降率高達50.6%和58.1%,網絡傳播抑制明顯。結果證實:在該航班運行風險有向帶權網絡中,按入度值控制節點對抑制風險傳播最為有效。

     

  • 圖  1  無向網絡

    Figure  1.  Undirected network

    圖  2  有向帶權網絡

    Figure  2.  Directional weighted network

    圖  3  改進SIR模型原理圖

    Figure  3.  Schematic of the improved SIR model

    圖  4  控制節點后有向帶權網絡傳播結果

    Figure  4.  Directed network propagation results after controlling the nodes

    圖  5  按不同控制方式的改進SIR模型變化趨勢圖

    Figure  5.  Change trend of the improved SIR model based on different control methods

    表  1  風險網絡節點

    Table  1.   Risk network node

    Node typeNode numberNode nameNode typeNode numberNode name
    Crew risk factors1Crew qualification level matchingOperational environment
    risk factors
    14Temporary air diversion
    2Crew English level15Controller’s radiotelephone communication level
    3Crew collaboration
    4Crew technical characteristics16Large areas of thunderstorms, moderate
    or severe icy areas, and turbulence
    in the airway
    5Captain flight experience
    6Captain’s familiarity with the airport17Rain, snow, fog, and other
    weather in airport
    7Copilot flying experience
    8Copilot’s familiarity with the airport18Runway friction effect
    9Transient fatigue19Airport landing standards
    10Cumulative fatigue20Flight procedure complexity
    11Special passenger pressure21Approach terrain and obstacles
    12Flight inspection22Airport equipment and facilities status
    13Change route before takeoff23Runway length and slope
    Aircraft risk factors27Landing approach involves
    equipment failure
    24Airport temporary restriction notice
    28Aircraft failure rate25Destination airport busyness
    29Navigation database encoding26Alternate airport busyness
    下載: 導出CSV

    表  2  權值設置規則

    Table  2.   Weight setting rules

    Weight settingProbability of previous node affecting the next nodeStatistical frequency/probability
    1High probabilityStatistical frequency ≥ 100, occurrence probability ? (3.94 × 10?3,1]
    0.8More likely[50, 100; 1.97 × 10?3, 3.94 × 10?3]
    0.5May occur[10, 50; 3.94 × 10?4, 1.97 × 10?3]
    0.2Low probability[1, 10; 3.94 × 10?5, 3.94 × 10?4]
    0Typically does not affect the next nodeStatistical frequency = 0; [0, 3.94 × 10?5]
    下載: 導出CSV

    表  3  網絡參數(部分)

    Table  3.   Network parameters (partial)

    Node numberTotal degree valueIn-degree valueOut-degree valueClustering coefficientBetweenness
    111740.8035710.000374
    25140.8095240.000220
    3282170.3809520.037671
    4221390.5285710.013475
    5231670.4558820.016636
    93926130.3046150.152202
    103924150.3369570.182254
    20259160.4117650.066644
    2510550.6190480.005644
    2610190.6805560.001102
    2713490.7000000.001223
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Coleman M E, Marks H M. Qualitative and quantitative risk assessment. Food Control, 1999, 10(4-5): 289 doi: 10.1016/S0956-7135(99)00052-3
    [2] Janic M. An assessment of risk and safety in civil aviation. J Air Transp Manage, 2000, 6(1): 43 doi: 10.1016/S0969-6997(99)00021-6
    [3] Bolczak C N, Fong V, Jehlen R. NextGen flight security risk assessment information concept//2009 IEEE/AIAA 28th Digital Avionics Systems Conference. Orlando, 2009: 6
    [4] Sun R S, Liu H H. Assessment theory and practice for airline safety. China Saf Sci J, 1999, 9(3): 69 doi: 10.3969/j.issn.1003-3033.1999.03.014

    孫瑞山, 劉漢輝. 航空公司安全評估理論與實踐. 中國安全科學學報, 1999, 9(3):69 doi: 10.3969/j.issn.1003-3033.1999.03.014
    [5] Sun R S, Tang P. Rapid assessment tool for flight safety risk. J Transp Inf Saf, 2013, 31(2): 88 doi: 10.3963/j.issn.1674-4861.2013.02.020

    孫瑞山, 唐品. 航班飛行安全風險快速評估工具研究. 交通信息與安全, 2013, 31(2):88 doi: 10.3963/j.issn.1674-4861.2013.02.020
    [6] Wang Y T, Li R, Lu F, et al. Risk assessment system of flight operation based on multiple factor analysis. J Tianjin Polytech Univ, 2014, 33(3): 84 doi: 10.3969/j.issn.1671-024X.2014.03.017

    王巖韜, 李蕊, 盧飛, 等. 基于多因素分析的航班運行風險評估體系. 天津工業大學學報, 2014, 33(3):84 doi: 10.3969/j.issn.1671-024X.2014.03.017
    [7] Wang Y T, Li R, Lu F, et al. Flight operation key risk factors inference based on operation data. J Transp Syst Eng Inf Technol, 2016, 16(1): 182 doi: 10.3969/j.issn.1009-6744.2016.01.029

    王巖韜, 李蕊, 盧飛, 等. 基于運行數據的航班運行關鍵風險因素推斷. 交通運輸系統工程與信息, 2016, 16(1):182 doi: 10.3969/j.issn.1009-6744.2016.01.029
    [8] Wang Y T, Zhao Y F. Research on flight operations risk identification based on multi-algorithm collaboration. China Saf Sci J, 2018, 28(6): 166

    王巖韜, 趙嶷飛. 基于多算法協作的航班運行風險辨識研究. 中國安全科學學報, 2018, 28(6):166
    [9] Wang Y T, Liu H, Tang J X, et al. Dynamic prediction technology in the application of flight operation risk. Control Decis, 2019, 34(9): 1946

    王巖韜, 劉宏, 唐建勛, 等. 動態預測技術在航班運行風險中的應用. 控制與決策, 2019, 34(9):1946
    [10] Wang Y T, Li J L, Gu R P. Flight operation risk prediction model based on the multivariate chaotic time series. Chin J Eng, 2020, 42(12): 1664

    王巖韜, 李景良, 谷潤平. 基于多變量混沌時間序列的航班運行風險預測模型. 工程科學學報, 2020, 42(12):1664
    [11] Lalis A, Socha V, Kraus J, et al. Conditional and unconditional safety performance forecasts for aviation predictive risk management//2018 IEEE Aerospace Conference. Big Sky, 2018: 1
    [12] Zhang X G, Mahadevan S. Ensemble machine learning models for aviation incident risk prediction. Decis Support Syst, 2019, 116: 48 doi: 10.1016/j.dss.2018.10.009
    [13] Zhang J K. Study of Flight Operations Risk Management on Shenzhen Airlines [Dissertation]. Lanzhou: Lanzhou University, 2019

    張繼凱. 深圳航空公司航班運行風險管理研究[學位論文]. 蘭州: 蘭州大學, 2019
    [14] Belkoura S, Cook A, Maria Pena J, et al. On the multi-dimensionality and sampling of air transport networks. Transp Res Part E, 2016, 94: 95 doi: 10.1016/j.tre.2016.07.013
    [15] Voltes-Dorta A, Rodriguez-Deniz H, Suau-Sanchez P. Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports. Transp Res Part A, 2017, 96: 119
    [16] Wu X P, Yang H Y, Han S C. Analysis of properties and delay propagation of air traffic based on complex network. Acta Aeron Astron Sin, 2017, 38(Suppl1): 108

    武喜萍, 楊紅雨, 韓松臣. 基于復雜網絡的空中交通特征與延誤傳播分析. 航空學報, 2017, 38(增刊1): 108
    [17] Wang X L, Pan W H, Zhao M. Vulnerability of air traffic interdependent network. Acta Aeron Astron Sin, 2018, 39(12): 268

    王興隆, 潘維煌, 趙末. 空中交通相依網絡的脆弱性研究. 航空學報, 2018, 39(12):268
    [18] Qi Y N, Gao J D. Cascading failure invulnerability and optimization strategy of airspace sector network. Acta Aeron Astron Sin, 2018, 39(12): 349

    齊雁楠, 高經東. 空域扇區網絡級聯失效抗毀性及優化策略. 航空學報, 2018, 39(12):349
    [19] Wu M G, Ye Z L, Wen X X, et al. Air traffic complexity recognition method based on complex networks. J Beijing Univ Aeron Astron, 2020, 46(5): 839

    吳明功, 葉澤龍, 溫祥西, 等. 基于復雜網絡的空中交通復雜性識別方法. 北京航空航天大學學報, 2020, 46(5):839
    [20] Wang Y T, Liu Y. Flight operation risk propagation based on complex network. J Transp Syst Eng Inf Technol, 2020, 20(1): 198

    王巖韜, 劉毓. 基于復雜網絡的航班運行風險傳播分析. 交通運輸系統工程與信息, 2020, 20(1):198
    [21] Flight Standard Administration of CAAC. Air Carrier Operation Control Risk Control System Implementation Guielines. 2015-09-28

    中國民用航空總局飛行標準司. 航空承運人運行控制風險管控系統實施指南, 2015-09-28
    [22] Zhao Y Q, Qin X, Li Z X, et al. Dynamic modeling and simulation of hazard and risk evolution for mine tailing ponds. J Univ Sci Technol Beijing, 2014, 36(9): 1158

    趙怡晴, 覃璇, 李仲學, 等. 尾礦庫隱患及風險演化系統動力學模擬與仿真. 北京科技大學學報, 2014, 36(9):1158
    [23] Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509 doi: 10.1126/science.286.5439.509
    [24] Ni S J. Research on Modeling of Infectious Disease Spreading Based on Complex Network Theory [Dissertation]. Beijing: Tsinghua University, 2009

    倪順江. 基于復雜網絡理論的傳染病動力學建模與研究[學位論文]. 北京: 清華大學, 2009
    [25] Reluga T C, Medlock J. Resistance mechanisms matter in SIR models. Math Biosci Eng, 2007, 4(3): 553 doi: 10.3934/mbe.2007.4.553
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數:  1069
  • HTML全文瀏覽量:  480
  • PDF下載量:  35
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-15
  • 網絡出版日期:  2020-11-14
  • 刊出日期:  2022-01-01

目錄

    /

    返回文章
    返回