<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于面投影微立體光刻技術的三維模擬儲層巖心模型制造

孟思煒 孫大興 俞佳慶 莫翌 邵廣斌 薛偉杰 周德開 鄭立臣

孟思煒, 孫大興, 俞佳慶, 莫翌, 邵廣斌, 薛偉杰, 周德開, 鄭立臣. 基于面投影微立體光刻技術的三維模擬儲層巖心模型制造[J]. 工程科學學報, 2021, 43(11): 1552-1559. doi: 10.13374/j.issn2095-9389.2020.06.10.001
引用本文: 孟思煒, 孫大興, 俞佳慶, 莫翌, 邵廣斌, 薛偉杰, 周德開, 鄭立臣. 基于面投影微立體光刻技術的三維模擬儲層巖心模型制造[J]. 工程科學學報, 2021, 43(11): 1552-1559. doi: 10.13374/j.issn2095-9389.2020.06.10.001
MENG Si-wei, SUN Da-xing, YU Jia-qing, MO Yi, SHAO Guang-bin, XUE Wei-jie, ZHOU De-kai, ZHENG Li-chen. Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography[J]. Chinese Journal of Engineering, 2021, 43(11): 1552-1559. doi: 10.13374/j.issn2095-9389.2020.06.10.001
Citation: MENG Si-wei, SUN Da-xing, YU Jia-qing, MO Yi, SHAO Guang-bin, XUE Wei-jie, ZHOU De-kai, ZHENG Li-chen. Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography[J]. Chinese Journal of Engineering, 2021, 43(11): 1552-1559. doi: 10.13374/j.issn2095-9389.2020.06.10.001

基于面投影微立體光刻技術的三維模擬儲層巖心模型制造

doi: 10.13374/j.issn2095-9389.2020.06.10.001
基金項目: 中國石油集團科學技術研究院有限公司科學研究與技術開發資助項目(2017ycq17);國家重點研發計劃政府間國際科技創新合作重點資助專項(2018YFE0196000);國家自然科學基金青年科學基金資助項目(51905135);廣東省重點研發計劃資助項目(2020B090923003)
詳細信息
    通訊作者:

    E-mail:zhenglichen@petrochina.com.cn

  • 中圖分類號: TE355

Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography

More Information
  • 摘要: 首先搭建具有高精度面投影微立體光刻設備,通過理論分析和實驗相結合的方法獲得最優打印工藝參數,然后提出一種可用于模擬地層巖心的微球堆疊巖心模型,并通過分析巖心模型成型機理,選取具有更高成型精度的堆積方式對巖心模型進行設計。該模擬巖心制造方法具有對特殊巖心結構制造的高適應性,為實驗室顯微鏡下研究多種EOR技術微觀驅替機理提供了新思路。

     

  • 圖  1  微立體光刻設備

    Figure  1.  Micro-stereolithography system

    圖  2  復雜空間網狀結構打印效果圖

    Figure  2.  Print effect diagram of a complex space mesh structure

    圖  3  巖心SEM圖像

    Figure  3.  SEM image of the core of rock

    圖  4  巖石顆粒的簡化建模型

    Figure  4.  Simplified modeling of rock particles

    圖  5  微球堆疊方式

    Figure  5.  Microsphere stacking method

    圖  6  簡單立方堆積的巖心模型

    Figure  6.  Simple cubic stacked core model

    圖  7  巖心模型基本單元

    Figure  7.  Basic unit of the core model

    圖  8  非均質巖心制造效果

    Figure  8.  Manufacturing effect of the heterogeneous core

    圖  9  微立體光刻巖心制造效果

    Figure  9.  Manufacturing effect of the micro-stereolithography core

    圖  10  逐層打印效果

    Figure  10.  Layer-by-layer printing effect

    圖  11  巖心缺陷結構

    Figure  11.  Core defect structure

    圖  12  巖心微球成型精度表征

    Figure  12.  Characterization of core microsphere forming accuracy

    圖  13  不同材料的微球堆疊巖心模型成型效果. (a)zDental Model沙黃樹脂成型巖心;(b)自配制樹脂體系成型巖心

    Figure  13.  Forming effect of the core model of microsphere accumulation by different materials: (a) the core of zDental Model sand yellow resin molding; (b) self-prepared resin system forming core

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Dai C L, Fang J C, Jiao B L, et al. Development of the research on EOR for carbonate fractured-vuggy reservoirs in China. J China Univ Petrol Nat Sci, 2018, 42(6): 67

    戴彩麗, 方吉超, 焦保雷, 等. 中國碳酸鹽巖縫洞型油藏提高采收率研究進展. 中國石油大學學報(自然科學版), 2018, 42(6):67
    [2] Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103

    朱維耀, 岳明, 劉昀楓, 等. 中國致密油藏開發理論研究進展. 工程科學學報, 2019, 41(9):1103
    [3] Samala R, Chaudhuri A, Vishnudas R, et al. Numerical analysis of viscous fingering and oil recovery by surfactant and polymer flooding in five-spot setup for water and oil-wet reservoirs. Geomech Geophys Geo-Energy Geo-Resour, 2020, 6(1): 3 doi: 10.1007/s40948-019-00124-1
    [4] Ma K, Liontas R, Conn C A, et al. Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter, 2012, 8(41): 10669 doi: 10.1039/c2sm25833a
    [5] Lv Q C, Li Z M, Li B F, et al. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid. Ind Eng Chem Res, 2015, 54(38): 9468 doi: 10.1021/acs.iecr.5b02197
    [6] Olayiwola S O, Dejam M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045 doi: 10.1016/j.fuel.2018.12.122
    [7] Hendraningrat L, Li S D, Tors?ter O. A coreflood investigation of nanofluid enhanced oil recovery. J Petrol Sci Eng, 2013, 111: 128 doi: 10.1016/j.petrol.2013.07.003
    [8] Guang X J, Dou N H, Jia Y P, et al. Application prospects of nanotechnology in petroleum engineering. Drill Prod Technol, 2019, 42(3): 34 doi: 10.3969/J.ISSN.1006-768X.2019.03.10

    光新軍, 豆寧輝, 賈云鵬, 等. 納米技術在石油工程中的應用前景. 鉆采工藝, 2019, 42(3):34 doi: 10.3969/J.ISSN.1006-768X.2019.03.10
    [9] Hamida T, Babadagli T. Displacement of oil by different interfacial tension fluids under ultrasonic waves. Colloids Surf A, 2008, 316(1-3): 176 doi: 10.1016/j.colsurfa.2007.09.012
    [10] Ge D. Study on Stability of ASP Flooding Sludge and Ultrasonic-Demulsification Oil Removal [Dissertation]. Daqing: Northeast Petroleum University, 2018.

    葛丹. 三元復合驅油泥穩定性及超聲—破乳洗油的研究[學位論文]. 大慶: 東北石油大學, 2018.
    [11] Liu W. Discussion on application of microbial oil recovery technology in oil exploitation. Chem Eng Des Commun, 2017, 43(7): 63 doi: 10.3969/j.issn.1003-6490.2017.07.060

    劉衛. 淺談石油開采中微生物采油技術的應用. 化工設計通訊, 2017, 43(7):63 doi: 10.3969/j.issn.1003-6490.2017.07.060
    [12] Liu J, Wang C, Sun C Y. Application of microbial flooding in oil fields. Chem Eng Des Commun, 2019, 45(1): 33 doi: 10.3969/j.issn.1003-6490.2019.01.030

    劉杰, 王超, 孫朝陽. 微生物驅油在油田的應用. 化工設計通訊, 2019, 45(1):33 doi: 10.3969/j.issn.1003-6490.2019.01.030
    [13] de Araujo L L G C, Sodré L G P, Brasil L R, et al. Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota - Part I biosurfactant characterization and oil displacement test. J Petrol Sci Eng, 2019, 180: 950 doi: 10.1016/j.petrol.2019.06.031
    [14] Nazina T, Sokolova D, Grouzdev D, et al. The potential application of microorganisms for sustainable petroleum recovery from heavy oil reservoirs. Sustainability, 2020, 12(1): 15
    [15] Haq B, Liu J S, Liu K Y, et al. The role of biodegradable surfactant in microbial enhanced oil recovery. J Petrol Sci Eng, 2020, 189: 106688 doi: 10.1016/j.petrol.2019.106688
    [16] Dong X Q, Ma X Y. Technical measures for three-stage oil recovery. Chem Eng Des Commun, 2017, 43(7): 42 doi: 10.3969/j.issn.1003-6490.2017.07.039

    董喜慶, 馬曉燕. 三次采油工藝技術措施. 化工設計通訊, 2017, 43(7):42 doi: 10.3969/j.issn.1003-6490.2017.07.039
    [17] Xu L. Pore Network Model Construction of Sandstone Reservoir and Application [Dissertation]. Chengdu: Southwest Petroleum University, 2015.

    許麗. 砂巖油藏孔隙網絡模型構造及應用研究[學位論文]. 成都: 西南石油大學, 2015.
    [18] Sun Z. A method of extracting pore date of tight sandstone based on 3D CT scanning image. J North China Inst Sci Technol, 2020, 17(1): 6 doi: 10.3969/j.issn.1672-7169.2020.01.002

    孫澤. 基于三維CT掃描圖像的致密砂巖孔隙數據提取方法. 華北科技學院學報, 2020, 17(1):6 doi: 10.3969/j.issn.1672-7169.2020.01.002
    [19] Abgrall P, Gue A M. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng, 2007, 17(5): R15 doi: 10.1088/0960-1317/17/5/R01
    [20] Xu K, Zhu P X, Huh C, et al. Microfluidic investigation of nanoparticles' role in mobilizing trapped oil droplets in porous media. Langmuir, 2015, 31(51): 13673 doi: 10.1021/acs.langmuir.5b03733
    [21] Beauchamp M J, Nordin G P, Woolley A T. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal Bioanal Chem, 2017, 409: 4311 doi: 10.1007/s00216-017-0398-3
    [22] Vavra E D, Zeng Y C, Xiao S Y, et al. Microfluidic devices for characterizing pore-scale event processes in porous media for oil recovery applications. J Vis Exp, 2018, 131: e56592
    [23] Li H X, Zhang T J. Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability. Soft Matter, 2019, 15(35): 6978 doi: 10.1039/C9SM01182J
    [24] Huang D L. Study of the Fluid Flow in Ultra-low Permeability Reservoir with Fractures and its Application at Daqing Olifield [Dissertation]. Daqing: Daqing Petroleum Institute, 2010.

    黃德利. 大慶油田特低滲透裂縫性油藏滲流特征研究及應用[學位論文]. 大慶: 大慶石油學院, 2010.
    [25] Ding X Y. Pore Structure Characteristics of F Oil Reservoir in Daqing and the Impact on the Seepage [Dissertation]. Daqing: Northeast Petroleum University, 2013.

    丁先運. 大慶F油層巖石孔隙結構特征及對滲流影響[學位論文]. 大慶: 東北石油大學, 2013
  • 加載中
圖(13)
計量
  • 文章訪問數:  1576
  • HTML全文瀏覽量:  1018
  • PDF下載量:  76
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-10
  • 網絡出版日期:  2020-12-31
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回