[1] |
Dai C L, Fang J C, Jiao B L, et al. Development of the research on EOR for carbonate fractured-vuggy reservoirs in China. J China Univ Petrol Nat Sci, 2018, 42(6): 67戴彩麗, 方吉超, 焦保雷, 等. 中國碳酸鹽巖縫洞型油藏提高采收率研究進展. 中國石油大學學報(自然科學版), 2018, 42(6):67
|
[2] |
Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103朱維耀, 岳明, 劉昀楓, 等. 中國致密油藏開發理論研究進展. 工程科學學報, 2019, 41(9):1103
|
[3] |
Samala R, Chaudhuri A, Vishnudas R, et al. Numerical analysis of viscous fingering and oil recovery by surfactant and polymer flooding in five-spot setup for water and oil-wet reservoirs. Geomech Geophys Geo-Energy Geo-Resour, 2020, 6(1): 3 doi: 10.1007/s40948-019-00124-1
|
[4] |
Ma K, Liontas R, Conn C A, et al. Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter, 2012, 8(41): 10669 doi: 10.1039/c2sm25833a
|
[5] |
Lv Q C, Li Z M, Li B F, et al. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid. Ind Eng Chem Res, 2015, 54(38): 9468 doi: 10.1021/acs.iecr.5b02197
|
[6] |
Olayiwola S O, Dejam M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045 doi: 10.1016/j.fuel.2018.12.122
|
[7] |
Hendraningrat L, Li S D, Tors?ter O. A coreflood investigation of nanofluid enhanced oil recovery. J Petrol Sci Eng, 2013, 111: 128 doi: 10.1016/j.petrol.2013.07.003
|
[8] |
Guang X J, Dou N H, Jia Y P, et al. Application prospects of nanotechnology in petroleum engineering. Drill Prod Technol, 2019, 42(3): 34 doi: 10.3969/J.ISSN.1006-768X.2019.03.10光新軍, 豆寧輝, 賈云鵬, 等. 納米技術在石油工程中的應用前景. 鉆采工藝, 2019, 42(3):34 doi: 10.3969/J.ISSN.1006-768X.2019.03.10
|
[9] |
Hamida T, Babadagli T. Displacement of oil by different interfacial tension fluids under ultrasonic waves. Colloids Surf A, 2008, 316(1-3): 176 doi: 10.1016/j.colsurfa.2007.09.012
|
[10] |
Ge D. Study on Stability of ASP Flooding Sludge and Ultrasonic-Demulsification Oil Removal [Dissertation]. Daqing: Northeast Petroleum University, 2018.葛丹. 三元復合驅油泥穩定性及超聲—破乳洗油的研究[學位論文]. 大慶: 東北石油大學, 2018.
|
[11] |
Liu W. Discussion on application of microbial oil recovery technology in oil exploitation. Chem Eng Des Commun, 2017, 43(7): 63 doi: 10.3969/j.issn.1003-6490.2017.07.060劉衛. 淺談石油開采中微生物采油技術的應用. 化工設計通訊, 2017, 43(7):63 doi: 10.3969/j.issn.1003-6490.2017.07.060
|
[12] |
Liu J, Wang C, Sun C Y. Application of microbial flooding in oil fields. Chem Eng Des Commun, 2019, 45(1): 33 doi: 10.3969/j.issn.1003-6490.2019.01.030劉杰, 王超, 孫朝陽. 微生物驅油在油田的應用. 化工設計通訊, 2019, 45(1):33 doi: 10.3969/j.issn.1003-6490.2019.01.030
|
[13] |
de Araujo L L G C, Sodré L G P, Brasil L R, et al. Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota - Part I biosurfactant characterization and oil displacement test. J Petrol Sci Eng, 2019, 180: 950 doi: 10.1016/j.petrol.2019.06.031
|
[14] |
Nazina T, Sokolova D, Grouzdev D, et al. The potential application of microorganisms for sustainable petroleum recovery from heavy oil reservoirs. Sustainability, 2020, 12(1): 15
|
[15] |
Haq B, Liu J S, Liu K Y, et al. The role of biodegradable surfactant in microbial enhanced oil recovery. J Petrol Sci Eng, 2020, 189: 106688 doi: 10.1016/j.petrol.2019.106688
|
[16] |
Dong X Q, Ma X Y. Technical measures for three-stage oil recovery. Chem Eng Des Commun, 2017, 43(7): 42 doi: 10.3969/j.issn.1003-6490.2017.07.039董喜慶, 馬曉燕. 三次采油工藝技術措施. 化工設計通訊, 2017, 43(7):42 doi: 10.3969/j.issn.1003-6490.2017.07.039
|
[17] |
Xu L. Pore Network Model Construction of Sandstone Reservoir and Application [Dissertation]. Chengdu: Southwest Petroleum University, 2015.許麗. 砂巖油藏孔隙網絡模型構造及應用研究[學位論文]. 成都: 西南石油大學, 2015.
|
[18] |
Sun Z. A method of extracting pore date of tight sandstone based on 3D CT scanning image. J North China Inst Sci Technol, 2020, 17(1): 6 doi: 10.3969/j.issn.1672-7169.2020.01.002孫澤. 基于三維CT掃描圖像的致密砂巖孔隙數據提取方法. 華北科技學院學報, 2020, 17(1):6 doi: 10.3969/j.issn.1672-7169.2020.01.002
|
[19] |
Abgrall P, Gue A M. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng, 2007, 17(5): R15 doi: 10.1088/0960-1317/17/5/R01
|
[20] |
Xu K, Zhu P X, Huh C, et al. Microfluidic investigation of nanoparticles' role in mobilizing trapped oil droplets in porous media. Langmuir, 2015, 31(51): 13673 doi: 10.1021/acs.langmuir.5b03733
|
[21] |
Beauchamp M J, Nordin G P, Woolley A T. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal Bioanal Chem, 2017, 409: 4311 doi: 10.1007/s00216-017-0398-3
|
[22] |
Vavra E D, Zeng Y C, Xiao S Y, et al. Microfluidic devices for characterizing pore-scale event processes in porous media for oil recovery applications. J Vis Exp, 2018, 131: e56592
|
[23] |
Li H X, Zhang T J. Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability. Soft Matter, 2019, 15(35): 6978 doi: 10.1039/C9SM01182J
|
[24] |
Huang D L. Study of the Fluid Flow in Ultra-low Permeability Reservoir with Fractures and its Application at Daqing Olifield [Dissertation]. Daqing: Daqing Petroleum Institute, 2010.黃德利. 大慶油田特低滲透裂縫性油藏滲流特征研究及應用[學位論文]. 大慶: 大慶石油學院, 2010.
|
[25] |
Ding X Y. Pore Structure Characteristics of F Oil Reservoir in Daqing and the Impact on the Seepage [Dissertation]. Daqing: Northeast Petroleum University, 2013.丁先運. 大慶F油層巖石孔隙結構特征及對滲流影響[學位論文]. 大慶: 東北石油大學, 2013
|