-
摘要: 陶瓷膜是過濾高溫含塵煙氣最有效的材料之一,其過濾性能和再生性能與塵粒在陶瓷膜孔道內的沉積和脫附機制相關。本文建立了不同孔隙率的陶瓷膜物理模型,然后結合連續性方程、動量方程和能量方程,設定邊界條件以及沉積條件,模擬了陶瓷膜過濾和脈沖反吹時,高溫煙氣的流動以及塵粒的沉積與脫附過程。結果表明,過濾速度較低和陶瓷膜孔隙率較高時,塵粒易于沉積在陶瓷膜孔道內;脈沖反吹時,增加反吹壓力,延長反吹時間,塵粒易于從陶瓷膜孔道脫附。采用厚度為20 mm,長度為1.5 m,孔隙率為40%的陶瓷膜管過濾溫度為1000 ℃,流速為1 m·min?1,壓力為0.1 MPa的含塵煙氣時,反吹氣壓力應不低于0.3 MPa,反吹時間不短于0.02 s,塵粒脫附時間在13 s,脈沖反吹時間間隔應高于452 s。Abstract: The main sources of fine particulate matter in the air are automobile exhaust and dust-containing hot flue gas emitted from combustion in the process of industrial manufacturing and municipal solid waste incineration, both of which are hard to clean at high temperatures. Ceramic membranes maintain high strength at high temperatures and an acid or alkaline atmosphere, and have a micron-scale and tortuous pores that block dust particles. The ceramic membrane is one of the most effective materials for successful hot flue gas cleaning as used in the integrated gasification combined cycle. Its filtration and regeneration performance are related to the deposition and desorption mechanism of dust particles in the channel of the membrane. In this study, a physical model of ceramic membranes of various porosities was established. Boundary and deposition conditions were then set up by combining continuity, momentum, and energy equations to simulate the flow of hot flue gas and the deposition and desorption process of dust particles during ceramic membrane filtration and pulse back-blowing. The results show that when the filtration velocity is low and porosity of the ceramic membrane is high, it is easy for dust particles to deposit in the membrane channel. Increasing back-blowing pressure prolongs back-blowing time during pulse back-blowing so that dust particles easily desorb from the channel of the ceramic membrane. When a ceramic membrane tube with a thickness of 20 mm, a length of 1.5 m, and a porosity of 40% is used to filtrate flue gas with a filtration temperature of 1000 °C, a flow rate of 1 m·min?1, and a pressure of 0.1 MPa, the blowback pressure should not be <0.3 MPa, blowback time should be longer than 0.02 s, and pulse blowback time interval should be more than 452 s.
-
Key words:
- ceramic membrane /
- filtration /
- pulse-jet back blowing /
- deposition /
- desorption
-
圖 7 不同過濾速度和孔隙率下沉積塵粒分布圖。(a)u = 3 m·min?1,ε = 40%;(b)u = 1 m·min?1,ε = 40%;(c)u = 1 m·min?1,ε = 45%;(d)u = 1 m·min?1,ε = 50%
Figure 7. Distribution of deposition dust particles at different filtration velocities and porosities: (a) u = 3 m·min?1, ε = 40%; (b) u = 1 m·min?1, ε = 40%; (c) u = 1 m·min?1, ε = 45%; (d) u = 1 m·min?1, ε = 50%
www.77susu.com -
參考文獻
[1] WHO. WHO releases country estimates on air pollution exposure and health impact [EB/OL]. World Health Organization (2016-9-27) [2020-04-29].https://www.who.int/news/item/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact [2] Maher B A, Ahmed I A M, Karloukovski V, et al. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci USA, 2016, 113(39): 10797 doi: 10.1073/pnas.1605941113 [3] Guo Y W, Wang W, Qiao W, et al. Characterization of heavy metals in fly ash from hazardous waste incinerators. J Univ Sci Technol Beijing, 2006, 28(1): 17 doi: 10.3321/j.issn:1001-053X.2006.01.004郭玉文, 王偉, 喬瑋, 等. 危險廢物焚燒飛灰中重金屬污染特性. 北京科技大學學報, 2006, 28(1):17 doi: 10.3321/j.issn:1001-053X.2006.01.004 [4] Zhang L, Pang X L, Gao K W. Preparation of porous carbides by reactive sintering. Chin J Eng, 2015, 37(6): 751張雷, 龐曉露, 高克瑋. 利用反應燒結法制備多孔碳化物陶瓷. 工程科學學報, 2015, 37(6):751 [5] Lupion M, Ortiz F J G, Navarrete B, et al. Assessment performance of high-temperature filtering elements. Fuel, 2010, 89(4): 848 doi: 10.1016/j.fuel.2009.04.016 [6] Heidenreich S. Hot gas filtration – A review. Fuel, 2013, 104: 83 doi: 10.1016/j.fuel.2012.07.059 [7] Wang Y M, Xue Y X, Li Y, et al. Preparation of porous cordierite ceramic support materials for high-temperature dust gas. J Chin Ceram Soc, 2005, 33(10): 1262 doi: 10.3321/j.issn:0454-5648.2005.10.017王耀明, 薛友祥, 李勇, 等. 高溫煙氣凈化用多孔堇青石陶瓷支撐體材料的研制. 硅酸鹽學報, 2005, 33(10):1262 doi: 10.3321/j.issn:0454-5648.2005.10.017 [8] He K, Wang L. A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable Sustainable Energy Rev, 2017, 70: 1022 doi: 10.1016/j.rser.2016.12.007 [9] Xiong R, Sun G C, Si K K, et al. Pressure drop prediction of ceramic membrane filters at high temperature. Powder Technol, 2020, 364: 647 doi: 10.1016/j.powtec.2020.01.085 [10] Silva C R N, Negrini V S, Aguiar M L, et al. Influence of gas velocity on cake formation and detachment. Powder Technol, 1999, 101(2): 165 doi: 10.1016/S0032-5910(98)00168-5 [11] Al-Otoom A Y, Ninomiya Y, Moghtaderi B, et al. Coal ash buildup on ceramic filters in a hot gas filtration system. Energy Fuels, 2003, 17(2): 316 doi: 10.1021/ef010275f [12] Jiang S, Li Y, Ladewig B P. A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ, 2017, 595: 567 doi: 10.1016/j.scitotenv.2017.03.235 [13] She Q H, Wang R, Fane A G, et al. Membrane fouling in osmotically driven membrane processes: A review. J Membr Sci, 2016, 499: 201 doi: 10.1016/j.memsci.2015.10.040 [14] Goh P S, Lau W J, Othman M H D, et al. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, 425: 130 doi: 10.1016/j.desal.2017.10.018 [15] Hilal N, Ogunbiyi O O, Miles N J, et al. Methods employed for control of fouling in MF and UF membranes: A comprehensive review. Sep Sci Technol, 2005, 40(10): 1957 doi: 10.1081/SS-200068409 [16] Ji Z L, Ding F X, Shi M X. Research progress in pulse cleaning of ceramic filters at high temperature. Power Eng, 2000, 20(3): 720姬忠禮, 丁富新, 時銘顯. 高溫剛性陶瓷過濾器脈沖反吹過程的研究進展. 動力工程, 2000, 20(3):720 [17] Jiao H Q, Ji Z L, Chen H H, et al. Influence of operating parameters on pulse cleaning process of ceramic filter. J Chem Ind Eng (China) , 2004, 55(7): 1155 doi: 10.3321/j.issn:0438-1157.2004.07.024(焦海青, 姬忠禮, 陳鴻海, 等. 操作參數對陶瓷過濾管脈沖反吹清灰過程的影響. 化工學報, 2004, 55(7):1155 doi: 10.3321/j.issn:0438-1157.2004.07.024 [18] Liu L F, Ji Z L, Luan X. Performance degradation model and prediction method of real-time remaining life for high temperature ceramic filter tube. Chin J Process Eng, 2019, 19(1): 165 doi: 10.12034/j.issn.1009-606X.218183劉龍飛, 姬忠禮, 欒鑫. 高溫陶瓷過濾管性能退化建模及實時壽命預測. 過程工程學報, 2019, 19(1):165 doi: 10.12034/j.issn.1009-606X.218183 [19] Li Y J, Ahmadi A, Omari A, et al. Three-dimensional microscale simulation of colloidal particle transport and deposition in model porous media with converging/diverging geometries. Colloids Surf A, 2018, 544: 179 doi: 10.1016/j.colsurfa.2018.02.034 [20] Boccardo G, Marchisio D L, Sethi R. Microscale simulation of particle deposition in porous media J Colloid Interface Sci, 2014, 417: 227 [21] Yan C P. Cleaning Effect and Mechanism of Pleated Fabric Filter Cartridge During Pulse Jet Cleaning [Dissertation]. Hefei: University of Science and Technology of China, 2014顏翠平. 脈沖噴吹褶皺式濾筒的清灰效果及機理研究[學位論文]. 合肥: 中國科學技術大學, 2014 [22] Lang Y, Zhao J M, Wang C A, et al. Fracture behavior in process of compression of porous ceramics with medium porosity. J Chin Ceram Soc, 2014, 42(12): 1528 doi: 10.7521/j.issn.0454-5648.2014.12.09郎瑩, 趙佳敏, 汪長安, 等. 中等氣孔率多孔陶瓷在受壓過程中的斷裂行為. 硅酸鹽學報, 2014, 42(12):1528 doi: 10.7521/j.issn.0454-5648.2014.12.09 [23] Yang S M, Tao W Q. Heat Transfer. 4th Ed. Beijing: Higher Education Press, 2006楊世銘, 陶文銓. 傳熱學. 4版. 北京: 高等教育出版社, 2006 [24] Nelson K E, Ginn T R. Colloid filtration theory and the happel sphere-in-cell model revisited with direct numerical simulation of colloids. Langmuir, 2005, 21(6): 2173 doi: 10.1021/la048404i [25] Saffman P G. The lift on a small sphere in a slow shear flow. J Fluid Mech, 1965, 22(2): 385 doi: 10.1017/S0022112065000824 -