<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

陶瓷膜孔道內塵粒沉積及脫附的模擬

熊瑞 張佳鈺 閆明偉 孫廣超 劉開琪

熊瑞, 張佳鈺, 閆明偉, 孫廣超, 劉開琪. 陶瓷膜孔道內塵粒沉積及脫附的模擬[J]. 工程科學學報, 2021, 43(11): 1543-1551. doi: 10.13374/j.issn2095-9389.2020.06.08.002
引用本文: 熊瑞, 張佳鈺, 閆明偉, 孫廣超, 劉開琪. 陶瓷膜孔道內塵粒沉積及脫附的模擬[J]. 工程科學學報, 2021, 43(11): 1543-1551. doi: 10.13374/j.issn2095-9389.2020.06.08.002
XIONG Rui, ZHANG Jia-yu, YAN Ming-wei, SUN Guang-chao, LIU Kai-qi. Numerical simulation of the fouling and cleaning of a ceramic membrane[J]. Chinese Journal of Engineering, 2021, 43(11): 1543-1551. doi: 10.13374/j.issn2095-9389.2020.06.08.002
Citation: XIONG Rui, ZHANG Jia-yu, YAN Ming-wei, SUN Guang-chao, LIU Kai-qi. Numerical simulation of the fouling and cleaning of a ceramic membrane[J]. Chinese Journal of Engineering, 2021, 43(11): 1543-1551. doi: 10.13374/j.issn2095-9389.2020.06.08.002

陶瓷膜孔道內塵粒沉積及脫附的模擬

doi: 10.13374/j.issn2095-9389.2020.06.08.002
基金項目: 多相復雜系統國家重點實驗室自主研究課題資助項目(MPCS-2021-C-01)
詳細信息
    通訊作者:

    E-mail: kqliu@ipe.ac.cn

  • 中圖分類號: TQ174.9

Numerical simulation of the fouling and cleaning of a ceramic membrane

More Information
  • 摘要: 陶瓷膜是過濾高溫含塵煙氣最有效的材料之一,其過濾性能和再生性能與塵粒在陶瓷膜孔道內的沉積和脫附機制相關。本文建立了不同孔隙率的陶瓷膜物理模型,然后結合連續性方程、動量方程和能量方程,設定邊界條件以及沉積條件,模擬了陶瓷膜過濾和脈沖反吹時,高溫煙氣的流動以及塵粒的沉積與脫附過程。結果表明,過濾速度較低和陶瓷膜孔隙率較高時,塵粒易于沉積在陶瓷膜孔道內;脈沖反吹時,增加反吹壓力,延長反吹時間,塵粒易于從陶瓷膜孔道脫附。采用厚度為20 mm,長度為1.5 m,孔隙率為40%的陶瓷膜管過濾溫度為1000 ℃,流速為1 m·min?1,壓力為0.1 MPa的含塵煙氣時,反吹氣壓力應不低于0.3 MPa,反吹時間不短于0.02 s,塵粒脫附時間在13 s,脈沖反吹時間間隔應高于452 s。

     

  • 圖  1  工作中的陶瓷膜示意圖

    Figure  1.  Ceramic membrane in work

    圖  2  不同孔隙率下的孔隙直徑分布圖

    Figure  2.  Pore diameter distribution with porosities of 40%, 45%, and 50%

    圖  3  不同孔隙率下流速和壓降的關系曲線

    Figure  3.  Pressure drop in different filtration velocities with porosities of 40%, 45%, and 50%

    圖  4  不同孔隙率下網格數量和有效顆粒直徑的關系曲線

    Figure  4.  Effective grain size in different mesh cell numbers with porosities of 40%, 45%, and 50%

    圖  5  不同過濾速度下塵粒沉積濃度和沉積率隨時間變化曲線。(a)塵粒沉積濃度;(b)沉積率

    Figure  5.  Concentration of deposition dust particles and deposition rate at differrent times with filtration velocities of 1 m·min?1, 2 m·min?1, and 3 m·min?1: (a) concentration of deposition dust particles; (b) deposition rate

    圖  6  不同孔隙率下沉積塵粒濃度和沉積率隨時間變化曲線。(a)塵粒沉積濃度;(b)沉積率

    Figure  6.  Concentration of deposition dust particles and deposition rate at different times with the porosities of 40%, 45%, and 50%: (a) concentration of deposition dust particles; (b) deposition rate

    圖  7  不同過濾速度和孔隙率下沉積塵粒分布圖。(a)u = 3 m·min?1ε = 40%;(b)u = 1 m·min?1ε = 40%;(c)u = 1 m·min?1ε = 45%;(d)u = 1 m·min?1ε = 50%

    Figure  7.  Distribution of deposition dust particles at different filtration velocities and porosities: (a) u = 3 m·min?1, ε = 40%; (b) u = 1 m·min?1, ε = 40%; (c) u = 1 m·min?1, ε = 45%; (d) u = 1 m·min?1, ε = 50%

    圖  8  反吹時間與沉積塵粒濃度和塵粒脫附率關系。(a)沉積塵粒濃度;(b)塵粒脫附率

    Figure  8.  Concentration of deposition dust particles and dust removal rate at different times with the pulse jet blowback pressures of 0.1, 0.3, and 0.5 MPa: (a) concentration of deposition dust particles; (b) dust removal rate

    圖  9  反吹時塵粒分布圖(a)和壓力分布圖(b)

    Figure  9.  Distribution of dust particles (a) and pressure (b) at a pulse jet blowback pressure of 0.1 MPa and blowback time of 0.006 s

    圖  10  不同反吹壓力下塵粒分布圖。(a)P2 = 0.3 MPa,T = 0.008 s;(b)P2 = 0.5 MPa,T = 0.008 s

    Figure  10.  Dust particle distribution under different blowback pressures: (a) P2 = 0.3 MPa, T = 0.008 s; (b) P2 = 0.5 MPa, T = 0.008 s

    圖  11  陶瓷膜工作時間對沉積塵粒濃度和沉積速率的影響

    Figure  11.  Concentration of deposition dust particles and dust deposition rate during filtration and pulse jet cleaning

    圖  12  不同時間下沉積塵粒和壓力分布圖。(a)0.03 s;(b)0.035 s;(c)0.095 s

    Figure  12.  Distribution of dust particles and pressure under different time: (a) 0.003 s, (b) 0.035 s, (c) 0.095 s

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] WHO. WHO releases country estimates on air pollution exposure and health impact [EB/OL]. World Health Organization (2016-9-27) [2020-04-29].https://www.who.int/news/item/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact
    [2] Maher B A, Ahmed I A M, Karloukovski V, et al. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci USA, 2016, 113(39): 10797 doi: 10.1073/pnas.1605941113
    [3] Guo Y W, Wang W, Qiao W, et al. Characterization of heavy metals in fly ash from hazardous waste incinerators. J Univ Sci Technol Beijing, 2006, 28(1): 17 doi: 10.3321/j.issn:1001-053X.2006.01.004

    郭玉文, 王偉, 喬瑋, 等. 危險廢物焚燒飛灰中重金屬污染特性. 北京科技大學學報, 2006, 28(1):17 doi: 10.3321/j.issn:1001-053X.2006.01.004
    [4] Zhang L, Pang X L, Gao K W. Preparation of porous carbides by reactive sintering. Chin J Eng, 2015, 37(6): 751

    張雷, 龐曉露, 高克瑋. 利用反應燒結法制備多孔碳化物陶瓷. 工程科學學報, 2015, 37(6):751
    [5] Lupion M, Ortiz F J G, Navarrete B, et al. Assessment performance of high-temperature filtering elements. Fuel, 2010, 89(4): 848 doi: 10.1016/j.fuel.2009.04.016
    [6] Heidenreich S. Hot gas filtration – A review. Fuel, 2013, 104: 83 doi: 10.1016/j.fuel.2012.07.059
    [7] Wang Y M, Xue Y X, Li Y, et al. Preparation of porous cordierite ceramic support materials for high-temperature dust gas. J Chin Ceram Soc, 2005, 33(10): 1262 doi: 10.3321/j.issn:0454-5648.2005.10.017

    王耀明, 薛友祥, 李勇, 等. 高溫煙氣凈化用多孔堇青石陶瓷支撐體材料的研制. 硅酸鹽學報, 2005, 33(10):1262 doi: 10.3321/j.issn:0454-5648.2005.10.017
    [8] He K, Wang L. A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable Sustainable Energy Rev, 2017, 70: 1022 doi: 10.1016/j.rser.2016.12.007
    [9] Xiong R, Sun G C, Si K K, et al. Pressure drop prediction of ceramic membrane filters at high temperature. Powder Technol, 2020, 364: 647 doi: 10.1016/j.powtec.2020.01.085
    [10] Silva C R N, Negrini V S, Aguiar M L, et al. Influence of gas velocity on cake formation and detachment. Powder Technol, 1999, 101(2): 165 doi: 10.1016/S0032-5910(98)00168-5
    [11] Al-Otoom A Y, Ninomiya Y, Moghtaderi B, et al. Coal ash buildup on ceramic filters in a hot gas filtration system. Energy Fuels, 2003, 17(2): 316 doi: 10.1021/ef010275f
    [12] Jiang S, Li Y, Ladewig B P. A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ, 2017, 595: 567 doi: 10.1016/j.scitotenv.2017.03.235
    [13] She Q H, Wang R, Fane A G, et al. Membrane fouling in osmotically driven membrane processes: A review. J Membr Sci, 2016, 499: 201 doi: 10.1016/j.memsci.2015.10.040
    [14] Goh P S, Lau W J, Othman M H D, et al. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, 425: 130 doi: 10.1016/j.desal.2017.10.018
    [15] Hilal N, Ogunbiyi O O, Miles N J, et al. Methods employed for control of fouling in MF and UF membranes: A comprehensive review. Sep Sci Technol, 2005, 40(10): 1957 doi: 10.1081/SS-200068409
    [16] Ji Z L, Ding F X, Shi M X. Research progress in pulse cleaning of ceramic filters at high temperature. Power Eng, 2000, 20(3): 720

    姬忠禮, 丁富新, 時銘顯. 高溫剛性陶瓷過濾器脈沖反吹過程的研究進展. 動力工程, 2000, 20(3):720
    [17] Jiao H Q, Ji Z L, Chen H H, et al. Influence of operating parameters on pulse cleaning process of ceramic filter. J Chem Ind Eng (China), 2004, 55(7): 1155 doi: 10.3321/j.issn:0438-1157.2004.07.024

    (焦海青, 姬忠禮, 陳鴻海, 等. 操作參數對陶瓷過濾管脈沖反吹清灰過程的影響. 化工學報, 2004, 55(7):1155 doi: 10.3321/j.issn:0438-1157.2004.07.024
    [18] Liu L F, Ji Z L, Luan X. Performance degradation model and prediction method of real-time remaining life for high temperature ceramic filter tube. Chin J Process Eng, 2019, 19(1): 165 doi: 10.12034/j.issn.1009-606X.218183

    劉龍飛, 姬忠禮, 欒鑫. 高溫陶瓷過濾管性能退化建模及實時壽命預測. 過程工程學報, 2019, 19(1):165 doi: 10.12034/j.issn.1009-606X.218183
    [19] Li Y J, Ahmadi A, Omari A, et al. Three-dimensional microscale simulation of colloidal particle transport and deposition in model porous media with converging/diverging geometries. Colloids Surf A, 2018, 544: 179 doi: 10.1016/j.colsurfa.2018.02.034
    [20] Boccardo G, Marchisio D L, Sethi R. Microscale simulation of particle deposition in porous media J Colloid Interface Sci, 2014, 417: 227
    [21] Yan C P. Cleaning Effect and Mechanism of Pleated Fabric Filter Cartridge During Pulse Jet Cleaning [Dissertation]. Hefei: University of Science and Technology of China, 2014

    顏翠平. 脈沖噴吹褶皺式濾筒的清灰效果及機理研究[學位論文]. 合肥: 中國科學技術大學, 2014
    [22] Lang Y, Zhao J M, Wang C A, et al. Fracture behavior in process of compression of porous ceramics with medium porosity. J Chin Ceram Soc, 2014, 42(12): 1528 doi: 10.7521/j.issn.0454-5648.2014.12.09

    郎瑩, 趙佳敏, 汪長安, 等. 中等氣孔率多孔陶瓷在受壓過程中的斷裂行為. 硅酸鹽學報, 2014, 42(12):1528 doi: 10.7521/j.issn.0454-5648.2014.12.09
    [23] Yang S M, Tao W Q. Heat Transfer. 4th Ed. Beijing: Higher Education Press, 2006

    楊世銘, 陶文銓. 傳熱學. 4版. 北京: 高等教育出版社, 2006
    [24] Nelson K E, Ginn T R. Colloid filtration theory and the happel sphere-in-cell model revisited with direct numerical simulation of colloids. Langmuir, 2005, 21(6): 2173 doi: 10.1021/la048404i
    [25] Saffman P G. The lift on a small sphere in a slow shear flow. J Fluid Mech, 1965, 22(2): 385 doi: 10.1017/S0022112065000824
  • 加載中
圖(12)
計量
  • 文章訪問數:  2952
  • HTML全文瀏覽量:  444
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-08
  • 網絡出版日期:  2020-08-06
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回