<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于FBRM和PVM技術的尾礦濃密過程絮團演化規律

周旭 阮竹恩 吳愛祥 王洪江 王貽明 尹升華

周旭, 阮竹恩, 吳愛祥, 王洪江, 王貽明, 尹升華. 基于FBRM和PVM技術的尾礦濃密過程絮團演化規律[J]. 工程科學學報, 2021, 43(11): 1425-1432. doi: 10.13374/j.issn2095-9389.2020.06.02.004
引用本文: 周旭, 阮竹恩, 吳愛祥, 王洪江, 王貽明, 尹升華. 基于FBRM和PVM技術的尾礦濃密過程絮團演化規律[J]. 工程科學學報, 2021, 43(11): 1425-1432. doi: 10.13374/j.issn2095-9389.2020.06.02.004
ZHOU Xu, RUAN Zhu-en, WU Ai-xiang, WANG Hong-jiang, WANG Yi-ming, YIN Sheng-hua. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering, 2021, 43(11): 1425-1432. doi: 10.13374/j.issn2095-9389.2020.06.02.004
Citation: ZHOU Xu, RUAN Zhu-en, WU Ai-xiang, WANG Hong-jiang, WANG Yi-ming, YIN Sheng-hua. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering, 2021, 43(11): 1425-1432. doi: 10.13374/j.issn2095-9389.2020.06.02.004

基于FBRM和PVM技術的尾礦濃密過程絮團演化規律

doi: 10.13374/j.issn2095-9389.2020.06.02.004
基金項目: 國家自然科學基金資助項目(51674012);中國博士后科學基金資助項目(2021M690011)
詳細信息
    通訊作者:

    E-mail:ziyuan0902rze@163.com

    wuaixiang@126.com

  • 中圖分類號: TD853.34

Aggregate evolution rule during tailings thickening based on FBRM and PVM

More Information
  • 摘要: 在初始泥層高75 cm和耙架轉速為0、0.1、1和10 r·min?1條件,以及耙架轉速為0.1 r·min?1和初始泥層高度為75、45和25 cm條件下,采用FBRM和PVM實時在線監測技術,對動態濃密系統泥層脫水過程絮團結構演化進行原位連續觀測,獲得了泥層脫水過程中,絮團直徑、數量分布特征和實時圖像。研究結果表明,尾礦濃密過程中絮團直徑和數量隨剪切時間延長呈現先增長后降低,再保持穩定的狀態。根據絮團直徑變化程度,將絮團密實化過程分為絮團生長期、絮團重構期和絮團破碎期3個階段。在剪切速率0.1 r·min?1和初始泥層高度75 cm實驗條件下,有利于絮團生長和絮團快速破裂重構,并提高絮團密實化程度,但過高的剪切速率作用對絮團結構影響程度下降。剪切速率的增加造成絮團平均直徑減小,同時絮團平均直徑減小的速率上升。隨著初始泥層高度增大,絮團生長階段時間更長,絮團直徑峰值更大,重構期較長,絮團平均直徑隨初始泥層高度增加而增大。尾礦絮團分形維數可以反映絮團結構變化特征,結合PVM圖像的分形維數和孔隙率計算,分析了剪切破壞力與絮團凝聚力存在的相互平衡關系,基于這種動態平衡對絮團破裂程度的影響,研究了尾礦濃密過程中的絮團密實化規律。

     

  • 圖  1  全尾砂粒徑分布曲線

    Figure  1.  Particle size distribution of tailings

    圖  2  實驗系統示意圖

    Figure  2.  Schematic of experimental system

    圖  3  不同剪切條件下絮團平均弦長變化曲線

    Figure  3.  Average chord length of aggregates under different shear conditions

    圖  4  不同初始泥層高度條件下絮團平均弦長變化曲線

    Figure  4.  Average chord length of aggregates under different initial mud bed heights

    圖  5  初始泥層高度75 cm耙架轉速0.1 r·min?1條件下不同時刻的絮團結構PVM圖像

    Figure  5.  PVM image of aggregate structure at different time under initial mud bed height of 75 cm and rake frame rotating speed of 0.1 r·min?1

    圖  6  不同剪切速率條件下絮團分形維數和孔隙率的關系曲線

    Figure  6.  Relationship between aggregate fractal dimension and porosity under different shear rates

    圖  7  不同初始泥層高度條件下絮團分形維數和孔隙率的關系曲線

    Figure  7.  Relationship between aggregate fractal dimension and porosity under different initial mud bed heights

    圖  8  耙架剪切速率與絮團直徑的關系

    Figure  8.  Relationship between shear rate of rake and aggregate diameter

    圖  9  初始泥層高度與絮團直徑的關系

    Figure  9.  Relationship between initial mud layer height and aggregate diameter

    圖  10  不同實驗條件下的絮團破裂程度與絮團分析維數和剪切時間的關系

    Figure  10.  Relationship of aggregate breakage with fractal dimension and shear time under different test conditions

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [2] Zhang N Y, Zhou J J, Wang J. A review of experimental study on floc strength of cohesive sediment. J Sediment Res, 2015(5): 75

    張乃予, 周晶晶, 王捷. 黏性泥沙絮團強度的試驗研究綜述. 泥沙研究, 2015(5):75
    [3] Sun T C. Solid and Liquid Separation. Changsha: Central South University Press, 2011

    孫體昌. 固液分離. 長沙: 中南大學出版社, 2011
    [4] Chang Q. Water Treatment Flocculation. Beijing: Chemical Industry Press, 2003

    常青. 水處理絮凝學. 北京: 化學工業出版社, 2003
    [5] Tombaz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci, 2006, 34(1-4): 105 doi: 10.1016/j.clay.2006.05.009
    [6] Jarvis P, Jefferson B, Gregory J, et al. A review of floc strength and breakage. Water Res, 2005, 39(14): 312l
    [7] Gladman B R, Rudman M, Scales P J. The effect of shear on gravity thickening: Pilot scale modelling. Chem Eng Sci, 2010, 65(14): 4293 doi: 10.1016/j.ces.2010.04.010
    [8] Zhang N Y, Zhou J J, Wang J. A review of experimental study on floc structure of cohesive sediment. J Sediment Res, 2016(1): 76

    張乃予, 周晶晶, 王捷. 泥沙絮團結構的試驗研究綜述. 泥沙研究, 2016(1):76
    [9] Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488
    [10] Guo C, He Q, Guo L C, et al. Study on the effects of turbulence on cohesive sediment flocculation and settling properties. J Sediment Res, 2019, 44(2): 18

    郭超, 何青, 郭磊城, 等. 紊動對黏性細顆粒泥沙絮凝沉降影響的試驗研究. 泥沙研究, 2019, 44(2):18
    [11] Ye J. A Preliminary Study on Flocculation Kinetics and Characteristics of Flocs [Dissertation]. Guangzhou: South China University of Technology, 2011

    葉健. 絮凝動力學及其絮體的特性的初步研究[學位論文]. 廣州: 華南理工大學, 2011
    [12] Nguyen T, Heath A, Witt P. Population balance-CFD modelling of fluid flow, solids distribution and flocculation in thickener feedwells // Fifth International Conference on CFD in the Process Industries. Melbourne, 2006
    [13] Owen A T, Nguyen T V, Fawell P D. The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners. Int J Miner Process, 2009, 93(2): 115 doi: 10.1016/j.minpro.2009.07.001
    [14] Greaves D, Boxall J, Mulligan J, et al. Measuring the particle size of a known distribution using the focused beam reflectance measurement technique. Chem Eng Sci, 2008, 63(22): 5410 doi: 10.1016/j.ces.2008.07.023
    [15] Selomulya C, Bushell G, Amal R, et al. Aggregate properties in relation to aggregation conditions under various applied shear environments. Int J Miner Process, 2004, 73(2-4): 295 doi: 10.1016/j.minpro.2003.09.003
    [16] Serra T, Colomer J, Logan B E. Efficiency of different shear devices on flocculation. Water Res, 2008, 42(4-5): 1113 doi: 10.1016/j.watres.2007.08.027
    [17] Oyegbile B, Ay P, Narra S. Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review. Environ Eng Res, 2016, 21(1): 1 doi: 10.4491/eer.2015.086
    [18] Bubakova P, Pivokonsky M, Filip P. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol, 2013, 235: 540 doi: 10.1016/j.powtec.2012.11.014
    [19] Coufort C, Bouyer D, Liné A. Flocculation related to local hydrodynamics in a Taylor–Couette reactor and in a jar. Chem Eng Sci, 2005, 60(8-9): 2179 doi: 10.1016/j.ces.2004.10.038
    [20] Lu S C, Ding Y Q, Guo J Y. Kinetics of fine particle aggregation in turbulence. Adv Colloid Interface Sci, 1998, 78(3): 197 doi: 10.1016/S0001-8686(98)00062-1
    [21] He J G, Liu J, Yuan Y X, et al. A novel quantitative method for evaluating floc strength under turbulent flow conditions. Desalination Water Treat, 2015, 56(7): 1975 doi: 10.1080/19443994.2014.958107
    [22] Bouyer D, Liné A, Do-Quang Z. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AIChE J, 2004, 50(9): 2064 doi: 10.1002/aic.10242
    [23] Spicer P T, Pratsinis S E. Shear-induced flocculation: the evolution of floc structure and the shape of the size distribution at steady state. Wat Res, 1996, 30(5): 1049 doi: 10.1016/0043-1354(95)00253-7
    [24] Wang X C, Tambo N. A study on the morphology and density of flocus-I. The fractal structure of floc. Acta Sci Circum, 2000, 20(3): 257 doi: 10.3321/j.issn:0253-2468.2000.03.001

    王曉昌, 丹保憲仁. 絮凝體形態學和密度的探討—Ⅰ. 從絮凝體分形構造談起. 環境科學學報, 2000, 20(3):257 doi: 10.3321/j.issn:0253-2468.2000.03.001
    [25] Glaman B R. The Effect of Shear on Dewatering of Flocculated Suspensions [Dissertation]. Mlebourne: the University of Mlebourne, 2005
  • 加載中
圖(10)
計量
  • 文章訪問數:  1587
  • HTML全文瀏覽量:  720
  • PDF下載量:  182
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-02
  • 網絡出版日期:  2020-07-07
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回