<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

螺紋插裝式溢流閥閥套內錐面制造的誤差控制

張祝 肖名濤 沈陸明 童成前

張祝, 肖名濤, 沈陸明, 童成前. 螺紋插裝式溢流閥閥套內錐面制造的誤差控制[J]. 工程科學學報, 2021, 43(7): 966-975. doi: 10.13374/j.issn2095-9389.2020.05.05.002
引用本文: 張祝, 肖名濤, 沈陸明, 童成前. 螺紋插裝式溢流閥閥套內錐面制造的誤差控制[J]. 工程科學學報, 2021, 43(7): 966-975. doi: 10.13374/j.issn2095-9389.2020.05.05.002
ZHANG Zhu, XIAO Ming-tao, SHEN Lu-ming, TONG Cheng-qian. Research on the manufacturing error control of the inner cone of the threaded cartridge relief valve sleeve[J]. Chinese Journal of Engineering, 2021, 43(7): 966-975. doi: 10.13374/j.issn2095-9389.2020.05.05.002
Citation: ZHANG Zhu, XIAO Ming-tao, SHEN Lu-ming, TONG Cheng-qian. Research on the manufacturing error control of the inner cone of the threaded cartridge relief valve sleeve[J]. Chinese Journal of Engineering, 2021, 43(7): 966-975. doi: 10.13374/j.issn2095-9389.2020.05.05.002

螺紋插裝式溢流閥閥套內錐面制造的誤差控制

doi: 10.13374/j.issn2095-9389.2020.05.05.002
基金項目: 湖南省科技廳重點研發計劃資助項目(2018NK2061);長沙市科技計劃資助項目(KH1907038)
詳細信息
    通訊作者:

    E-mail:weiwozhonghua@126.com

  • 中圖分類號: TH137.52;TH124

Research on the manufacturing error control of the inner cone of the threaded cartridge relief valve sleeve

More Information
  • 摘要: 螺紋插裝式溢流閥閥套精加工采用碳氮共滲后磨削的制造工藝,內錐面的形位誤差會影響溢流閥的使用壽命和靜動態特性,制造過程需要精準控制內錐面的誤差。通過對工藝分析建立制造誤差模型并應用研究,由此獲得內錐面自身角度的合理誤差范圍,以及內錐角誤差與磨削量之間的變化關系。根據閥套結構特點設計專用的檢測裝置,并對檢測原理和測量誤差進行分析,通過誤差校對提高檢測精度。對熱處理后的閥套進行軸向尺寸分組,并采用基準統一原則,保證磨削制造精度的穩定性。根據檢測原理和誤差模型對試磨件進行誤差計算,并據此調整磨削參數,使制造誤差合格;后續制造時采用檢測裝置快速測量閥套的密封圓軸向尺寸,使制造誤差均落在控制范圍內,保證批量生產的可控性。研究表明,基于某型溢流閥的設計及工藝參數,內錐面自身角度的實際制造誤差控制以±0.8°為宜,對應的密封圓軸向最大磨削公差為0.186 mm、修正后的最小磨削公差為0.075 mm;實驗驗證了誤差模型的準確性,所述檢測方法的角度測量誤差為0.06°、密封圓軸向尺寸測量誤差為2 μm,因角度測量誤差帶來的最大、最小磨削量范圍偏差可通過內錐角實際制造誤差的收縮進行補償;所研究的理論與方法也為其他內錐面的制造控制及逆向工程提供了系統的方法。

     

  • 圖  1  閥套閥芯裝配圖

    Figure  1.  Assembly drawing of the valve sleeve and valve core

    1—Valve sleeve; 2—Valve spool; 3—Valve block; N—Inner cone; W—Outer cone; k—Sealing line; d0—Matching circle diameter; d1—Seal circle diameter; Dp—Oil inlet diameter; F1—Charge spring pressure; F2—Return spring pressure

    圖  2  閥套結構圖

    Figure  2.  Structure of the valve sleeve

    α—Inner cone angle of valve sleeve; L0—Positioning size of sealing line; L1—Size of the datum shift; y—Contact seal section; e—Base level of transfer; h—Positioning reference plane; D1—Contact seal diameter; Di—Great circle of cone; D0—Match the diameter of the inner hole

    圖  3  角度偏差分析原理圖

    Figure  3.  Schematic of angle deviation analysis

    θ—Lower deviation angle; β—Upper deviation angle; Dc—Center circle diameter; α/2—Half angle of inner cone; ζ1—Maximum grind amount in normal direction; λ1—Axial dimension corresponding to the maximum normal grinding amount; ζ2—Sealing circle normal grinding amount; λ2—Axial grinding amount of seal circle; La—Axial position of seal circle before grinding; Lb—Axial position of seal circle after grinding

    圖  4  實際最大磨削量變化趨勢

    Figure  4.  Change trend of the actual maximum grinding amount

    圖  5  實際最小磨削量變化趨勢

    Figure  5.  Change trend of the actual minimum grinding amount

    圖  6  實際磨削公差變化趨勢

    Figure  6.  Variation trend of the actual grinding tolerance

    圖  7  角度檢測裝置結構圖

    Figure  7.  Structure of the angle detection device

    r—Acute angle of contact; L2—Length of the tool to measure the angle; dt—Diameter of support circle; d2—Diameter of the outer circle of the inspection tool; d3—Small circle diameter of detection; d4—Large circle diameter of detection

    圖  8  磨削量檢測裝置結構圖

    Figure  8.  Structure of the grinding quantity detection device

    L3—Length of grinding gauge; d5—Sealing circle diameter of detection

    圖  9  浮動支撐結構圖

    Figure  9.  Floating support structure drawing

    μ—Floating support interference; ε—Amount of clearance of the retaining ring

    圖  10  角度檢測原理圖

    Figure  10.  Schematic of angle detection

    δ1—Length of the opposite side of the half angle; δ2—Adjacent side length of half-angle; α′/2—Actual half angle; L4—Large circle detection axial length; L5—Small circle detection axial length

    圖  11  檢測示意圖

    Figure  11.  Measurement diagram

    1—Workbench; 2—Height ruler; 3—Dial indicator

    圖  12  測量誤差因素。(a)兩軸傾斜偏移;(b)兩端面不平行

    Figure  12.  Factors of measurement error: (a) two-axis tilt offset; (b) two ends are not parallel

    表  1  溢流閥計算參數

    Table  1.   Overflow valve calculation parameters

    ParameterValue
    Great circle of cone, Di/mm10.43
    Oil inlet diameter, Dp/mm6
    Contact seal diameter, D1/mm9.25
    Inner cone angle of valve sleeve, α/(°)65
    Maximum grind amount in normal direction, ζ1/mm0.1
    下載: 導出CSV

    表  2  檢測數據

    Table  2.   Test data

    Parameter/mmValue
    Small circle diameter of detection, d36.573
    Large circle diameter of detection, d49.919
    Sealing circle diameter of detection, d59.252
    Angle fixture length, L246.813
    Length of grinding gauge, L345.233
    Large circle detection axial length, L448.145
    Small circle detection axial length, L550.750
    Axial position of seal circle before grinding, La48.692
    Axial position of seal circle after grinding, Lb48.653
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang Z Z, Li J N, Chen Y Y. Steady-state fluid force direction of comparative analysis about slip valve and cone valve. Chin Hydraul Pneumatics, 2009(3): 68 doi: 10.3969/j.issn.1000-4858.2009.03.028

    張作狀, 李建楠, 陳媛媛. 關于滑閥與錐閥中穩態液動力方向的比較分析. 液壓與氣動, 2009(3):68 doi: 10.3969/j.issn.1000-4858.2009.03.028
    [2] Liu G. Reseach of the Structural Parameters and Working Performance of Cartridge Relief Valve[Dissertation]. Chengdu: Southwest Jiaotong University, 2014

    劉剛. 螺紋插裝溢流閥結構參數與工作性能研究[學位論文]. 成都: 西南交通大學, 2014
    [3] Wang X J, Shen Z Q, Man G J. Simulation and experiment of cavitation phenomenon two-phase of hydraulic cone valve. J Harbin Inst Technol, 2019, 51(7): 144 doi: 10.11918/j.issn.0367-6234.201806016

    王曉晶, 沈志琦, 滿國佳. 液壓錐閥氣穴現象兩相流仿真及實驗. 哈爾濱工業大學學報, 2019, 51(7):144 doi: 10.11918/j.issn.0367-6234.201806016
    [4] Yang G L, Zhao M X, Su H S, et al. Static performance of a new type of cartridge relief valve. Chin Hydraul Pneumatics, 2015(3): 94 doi: 10.11832/j.issn.1000-4858.2015.03.023

    楊國來, 趙梅香, 蘇華山, 等. 一種新型插裝式溢流閥的穩態性能研究. 液壓與氣動, 2015(3):94 doi: 10.11832/j.issn.1000-4858.2015.03.023
    [5] Liu J W. Discussion on heat treatment before nitrocarburizing from deformation of a valve sleeve nitrocarburizing. Heat Treat Foreign Met, 1997(Suppl): 80

    劉建文. 從一種閥套氮碳共滲變形談氮碳共滲前的熱處理. 國外金屬熱處理, 1997(增刊): 80
    [6] Fu H T, Zhang J, Wu S, et al. Effect of low-temperature salt bath nitriding on the corrosion and wear resistance of Custom 465. Chin J Eng, 2016, 38(2): 235

    付航濤, 張津, 吳帥, 等. 低溫鹽浴滲氮對Custom 465鋼耐蝕及耐磨性的影響. 工程科學學報, 2016, 38(2):235
    [7] Do-hoon Jin. A study on the numerical analysis of internal flow in a cone type valve. J Korean Soc Ind Convergence, 2020, 23(2): 199 (???. Cone Type ?? ???? ????? ?? ??. ???????? ???, 2020, 23(2):199
    [8] Washio S, Kikui S, Takahashi S. Nucleation and subsequent cavitation in a hydraulic oil poppet valve. Proc Inst Mech Eng Part C:J Mech Eng Sci, 2010, 224(4): 947 doi: 10.1243/09544062JMES1618
    [9] Kumagai K, Ryu S, Ota M, et al. Investigation of poppet valve vibration with cavitation. Int J Fluid Power, 2016, 17(1): 15 doi: 10.1080/14399776.2015.1115648
    [10] Zhang C, Weng Z D. Relief valve structure’s ro1e in static and dynamic performance. Chin Hydraul Pneumatics, 2014(9): 65

    張策, 翁之旦. 淺析溢流閥結構及其對動靜態性能的影響. 液壓與氣動, 2014(9):65
    [11] Peng L K, Song F, Chen J, et al. Optimization design and research of unloading port of buffering overflow valve. J Naval Univ Eng, 2017, 29(6): 67

    彭利坤, 宋飛, 陳佳, 等. 緩沖溢流閥卸荷閥口的優化設計與研究. 海軍工程大學學報, 2017, 29(6):67
    [12] Liu J. Analysis on Dynamic and Static Characteristics and Structure Optimization of Cartridge Relief Valve [Dissertation]. Tianjin: Tianjin University of Technology, 2012

    劉杰. 插裝溢流閥動靜態性能分析及結構優化[學位論文]. 天津: 天津理工大學, 2012
    [13] Zhao C, Ma M L. Surface combined treatment of carbonitriding and B?C?N?RE multi-elements deep-penetrating on 20Cr steel firebrick die. Heat Treat Met, 2009, 34(11): 78

    趙程, 馬明林. 碳氮共滲-深層稀土硼碳氮共滲復合處理在20Cr鋼耐火磚模具中的應用. 金屬熱處理, 2009, 34(11):78
    [14] Zhang J G, Cong P W, Wang J H, et al. New technology and application of vacuum carbonitriding. Heat Treat Met, 2006, 31(3): 59 doi: 10.3969/j.issn.0254-6051.2006.03.015

    張建國, 叢培武, 王京暉, 等. 真空碳氮共滲新技術及其應用. 金屬熱處理, 2006, 31(3):59 doi: 10.3969/j.issn.0254-6051.2006.03.015
    [15] Gorash Y, Dempster W, Nicholls W D, et al. Study of mechanical aspects of leak tightness in a pressure relief valve using advanced FE-analysis. J Loss Prev Process Ind, 2016, 43: 61 doi: 10.1016/j.jlp.2016.04.009
    [16] Ma W, Ma F, Zhou Z H, et al. Instability analysis and experimental study of a hydraulic relief valve. Chin J Eng, 2016, 38(1): 135

    馬威, 馬飛, 周志鴻, 等. 液壓溢流閥的失穩分析和實驗研究. 工程科學學報, 2016, 38(1):135
    [17] Basavaraj V Hubballi, Vilas B Sondur. Modeling and simulation of conical poppet type relief valve with damping spool. Hidraulica, 2016(1): 13
    [18] Xie H Y, Lu Z W, Zhang Y L. Influence of feed rate for hard turning on stress of machined surface. Bearing, 2014(9): 20 doi: 10.3969/j.issn.1000-3762.2014.09.007

    謝華永, 盧振偉, 張玉玲. 硬車削進給量對加工表面應力的影響. 軸承, 2014(9):20 doi: 10.3969/j.issn.1000-3762.2014.09.007
    [19] Duan C Z, Zhang F Y, Kou W N, et al. Martensitic transformation of surface white layer in high speed hard cutting. J Jilin Univ Eng Technol Ed, 2019, 49(5): 1575

    段春爭, 張方圓, 寇文能, 等. 高速硬切削表面白層馬氏體相變. 吉林大學學報(工學版), 2019, 49(5):1575
    [20] Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929

    陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響. 工程科學學報, 2019, 41(7):929
    [21] Finesso R, Rundo M. Numerical and experimental investigation on a conical poppet relief valve with flow force compensation. Int J Fluid Power, 2017, 18(2): 111 doi: 10.1080/14399776.2017.1296740
    [22] Shi L, Zhang Y Z, Wang Q H. Research on noise reduction of pilot relief valve. Chin Hydraul Pneumatics, 2015(4): 122 doi: 10.11832/j.issn.1000-4858.2015.04.029

    石磊, 張艷哲, 王清漢. 先導式溢流閥噪聲控制技術研究. 液壓與氣動, 2015(4):122 doi: 10.11832/j.issn.1000-4858.2015.04.029
    [23] Huang C Z, Long H, Chen Y H. Research on measuring device for the length of cylindrical bore with inner conical bore. Mach Des Manuf, 2016(8): 138 doi: 10.3969/j.issn.1001-3997.2016.08.038

    黃長征, 龍慧, 陳英懷. 一種里端帶內錐孔的圓柱孔長度測量裝置的研制. 機械設計與制造, 2016(8):138 doi: 10.3969/j.issn.1001-3997.2016.08.038
    [24] Han Y S. Establishment and analysis of formulas using sine protractor to measure diameter of inner cone bore and outer cone. Tool Eng, 2010, 44(4): 101 doi: 10.3969/j.issn.1000-7008.2010.04.030

    韓英樹. 正弦規測量內、外錐直徑尺寸公式的建立與分析. 工具技術, 2010, 44(4):101 doi: 10.3969/j.issn.1000-7008.2010.04.030
    [25] Bi C, Fang J G, Min L X, et al. Study on precision measuring system for inner cone angle of fuel nozzles. Mech Sci Technol Aerosp Eng, 2019, 38(3): 465

    畢超, 房建國, 閔羅肖, 等. 燃油噴嘴內腔錐角的精密測量系統研究. 機械科學與技術, 2019, 38(3):465
  • 加載中
圖(12) / 表(2)
計量
  • 文章訪問數:  1633
  • HTML全文瀏覽量:  726
  • PDF下載量:  256
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-05
  • 網絡出版日期:  2020-07-01
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回