Research on the manufacturing error control of the inner cone of the threaded cartridge relief valve sleeve
-
摘要: 螺紋插裝式溢流閥閥套精加工采用碳氮共滲后磨削的制造工藝,內錐面的形位誤差會影響溢流閥的使用壽命和靜動態特性,制造過程需要精準控制內錐面的誤差。通過對工藝分析建立制造誤差模型并應用研究,由此獲得內錐面自身角度的合理誤差范圍,以及內錐角誤差與磨削量之間的變化關系。根據閥套結構特點設計專用的檢測裝置,并對檢測原理和測量誤差進行分析,通過誤差校對提高檢測精度。對熱處理后的閥套進行軸向尺寸分組,并采用基準統一原則,保證磨削制造精度的穩定性。根據檢測原理和誤差模型對試磨件進行誤差計算,并據此調整磨削參數,使制造誤差合格;后續制造時采用檢測裝置快速測量閥套的密封圓軸向尺寸,使制造誤差均落在控制范圍內,保證批量生產的可控性。研究表明,基于某型溢流閥的設計及工藝參數,內錐面自身角度的實際制造誤差控制以±0.8°為宜,對應的密封圓軸向最大磨削公差為0.186 mm、修正后的最小磨削公差為0.075 mm;實驗驗證了誤差模型的準確性,所述檢測方法的角度測量誤差為0.06°、密封圓軸向尺寸測量誤差為2 μm,因角度測量誤差帶來的最大、最小磨削量范圍偏差可通過內錐角實際制造誤差的收縮進行補償;所研究的理論與方法也為其他內錐面的制造控制及逆向工程提供了系統的方法。Abstract: The precision machining of the threaded cartridge relief valve sleeve is a manufacturing process of grinding after carbonitriding. The shape and position error of inner cone will affect the service life and static and dynamic characteristics of the relief valve. This requires the need of manufacturing process to accurately control the error of the inner cone. Based on the process analysis, a manufacturing error model was established and applied to obtain a reasonable error range of the inner cone angle and to determine the relationship between the inner cone angle error and the grinding amount. According to the structural characteristics of the valve sleeve, a special detection device was designed and the detection principle and measurement error were analyzed to improve the detection accuracy through error proofreading. After heat treatment, the valve sleeve was divided into axial size groups and the unified principle of datum was adopted to ensure the stability of grinding accuracy. According to the detection principle and error model, the error calculation of the grinding test piece was carried out, and the grinding parameters were adjusted accordingly to make a qualified manufacturing error. In the subsequent manufacturing, the axial dimension of the detection sealing circle of the valve sleeve is quickly measured by the detection device, so that the manufacturing error falls within the control range, ensuring the controllability of the batch production. Based on the design and process parameters of a relief valve, results reveal that the control error of the inner cone’s own angle should be ±0.8°. The corresponding maximum grinding tolerance value of the axial direction of the sealing circle is 0.186 mm, while the corrected minimum grinding tolerance is 0.075 mm. Through experiments, the accuracy of the error model is verified. The angle measurement error of the detection method is 0.06°, while the measurement error of the axial dimension of the sealing circle is 2 μm. The deviation of the maximum grinding amount and the minimum grinding amount range caused by the angle measurement error is compensated by the shrinkage of the actual manufacturing error of the inner cone angle. The theory and method also provide a systematic process for manufacturing control and reverse engineering of the other inner cone.
-
Key words:
- relief valve /
- thread cartridge /
- valve sleeve /
- inner cone /
- inner cone angle /
- manufacturing error
-
圖 2 閥套結構圖
Figure 2. Structure of the valve sleeve
α—Inner cone angle of valve sleeve; L0—Positioning size of sealing line; L1—Size of the datum shift; y—Contact seal section; e—Base level of transfer; h—Positioning reference plane; D1—Contact seal diameter; Di—Great circle of cone; D0—Match the diameter of the inner hole
圖 3 角度偏差分析原理圖
Figure 3. Schematic of angle deviation analysis
θ—Lower deviation angle; β—Upper deviation angle; Dc—Center circle diameter; α/2—Half angle of inner cone; ζ1—Maximum grind amount in normal direction; λ1—Axial dimension corresponding to the maximum normal grinding amount; ζ2—Sealing circle normal grinding amount; λ2—Axial grinding amount of seal circle; La—Axial position of seal circle before grinding; Lb—Axial position of seal circle after grinding
表 1 溢流閥計算參數
Table 1. Overflow valve calculation parameters
Parameter Value Great circle of cone, Di/mm 10.43 Oil inlet diameter, Dp/mm 6 Contact seal diameter, D1/mm 9.25 Inner cone angle of valve sleeve, α/(°) 65 Maximum grind amount in normal direction, ζ1/mm 0.1 表 2 檢測數據
Table 2. Test data
Parameter/mm Value Small circle diameter of detection, d3 6.573 Large circle diameter of detection, d4 9.919 Sealing circle diameter of detection, d5 9.252 Angle fixture length, L2 46.813 Length of grinding gauge, L3 45.233 Large circle detection axial length, L4 48.145 Small circle detection axial length, L5 50.750 Axial position of seal circle before grinding, La 48.692 Axial position of seal circle after grinding, Lb 48.653 www.77susu.com -
參考文獻
[1] Zhang Z Z, Li J N, Chen Y Y. Steady-state fluid force direction of comparative analysis about slip valve and cone valve. Chin Hydraul Pneumatics, 2009(3): 68 doi: 10.3969/j.issn.1000-4858.2009.03.028張作狀, 李建楠, 陳媛媛. 關于滑閥與錐閥中穩態液動力方向的比較分析. 液壓與氣動, 2009(3):68 doi: 10.3969/j.issn.1000-4858.2009.03.028 [2] Liu G. Reseach of the Structural Parameters and Working Performance of Cartridge Relief Valve[Dissertation]. Chengdu: Southwest Jiaotong University, 2014劉剛. 螺紋插裝溢流閥結構參數與工作性能研究[學位論文]. 成都: 西南交通大學, 2014 [3] Wang X J, Shen Z Q, Man G J. Simulation and experiment of cavitation phenomenon two-phase of hydraulic cone valve. J Harbin Inst Technol, 2019, 51(7): 144 doi: 10.11918/j.issn.0367-6234.201806016王曉晶, 沈志琦, 滿國佳. 液壓錐閥氣穴現象兩相流仿真及實驗. 哈爾濱工業大學學報, 2019, 51(7):144 doi: 10.11918/j.issn.0367-6234.201806016 [4] Yang G L, Zhao M X, Su H S, et al. Static performance of a new type of cartridge relief valve. Chin Hydraul Pneumatics, 2015(3): 94 doi: 10.11832/j.issn.1000-4858.2015.03.023楊國來, 趙梅香, 蘇華山, 等. 一種新型插裝式溢流閥的穩態性能研究. 液壓與氣動, 2015(3):94 doi: 10.11832/j.issn.1000-4858.2015.03.023 [5] Liu J W. Discussion on heat treatment before nitrocarburizing from deformation of a valve sleeve nitrocarburizing. Heat Treat Foreign Met, 1997(Suppl): 80劉建文. 從一種閥套氮碳共滲變形談氮碳共滲前的熱處理. 國外金屬熱處理, 1997(增刊): 80 [6] Fu H T, Zhang J, Wu S, et al. Effect of low-temperature salt bath nitriding on the corrosion and wear resistance of Custom 465. Chin J Eng, 2016, 38(2): 235付航濤, 張津, 吳帥, 等. 低溫鹽浴滲氮對Custom 465鋼耐蝕及耐磨性的影響. 工程科學學報, 2016, 38(2):235 [7] Do-hoon Jin. A study on the numerical analysis of internal flow in a cone type valve. J Korean Soc Ind Convergence, 2020, 23(2): 199 (???. Cone Type ?? ???? ????? ?? ??. ???????? ???, 2020, 23(2):199 [8] Washio S, Kikui S, Takahashi S. Nucleation and subsequent cavitation in a hydraulic oil poppet valve. Proc Inst Mech Eng Part C:J Mech Eng Sci, 2010, 224(4): 947 doi: 10.1243/09544062JMES1618 [9] Kumagai K, Ryu S, Ota M, et al. Investigation of poppet valve vibration with cavitation. Int J Fluid Power, 2016, 17(1): 15 doi: 10.1080/14399776.2015.1115648 [10] Zhang C, Weng Z D. Relief valve structure’s ro1e in static and dynamic performance. Chin Hydraul Pneumatics, 2014(9): 65張策, 翁之旦. 淺析溢流閥結構及其對動靜態性能的影響. 液壓與氣動, 2014(9):65 [11] Peng L K, Song F, Chen J, et al. Optimization design and research of unloading port of buffering overflow valve. J Naval Univ Eng, 2017, 29(6): 67彭利坤, 宋飛, 陳佳, 等. 緩沖溢流閥卸荷閥口的優化設計與研究. 海軍工程大學學報, 2017, 29(6):67 [12] Liu J. Analysis on Dynamic and Static Characteristics and Structure Optimization of Cartridge Relief Valve [Dissertation]. Tianjin: Tianjin University of Technology, 2012劉杰. 插裝溢流閥動靜態性能分析及結構優化[學位論文]. 天津: 天津理工大學, 2012 [13] Zhao C, Ma M L. Surface combined treatment of carbonitriding and B?C?N?RE multi-elements deep-penetrating on 20Cr steel firebrick die. Heat Treat Met, 2009, 34(11): 78趙程, 馬明林. 碳氮共滲-深層稀土硼碳氮共滲復合處理在20Cr鋼耐火磚模具中的應用. 金屬熱處理, 2009, 34(11):78 [14] Zhang J G, Cong P W, Wang J H, et al. New technology and application of vacuum carbonitriding. Heat Treat Met, 2006, 31(3): 59 doi: 10.3969/j.issn.0254-6051.2006.03.015張建國, 叢培武, 王京暉, 等. 真空碳氮共滲新技術及其應用. 金屬熱處理, 2006, 31(3):59 doi: 10.3969/j.issn.0254-6051.2006.03.015 [15] Gorash Y, Dempster W, Nicholls W D, et al. Study of mechanical aspects of leak tightness in a pressure relief valve using advanced FE-analysis. J Loss Prev Process Ind, 2016, 43: 61 doi: 10.1016/j.jlp.2016.04.009 [16] Ma W, Ma F, Zhou Z H, et al. Instability analysis and experimental study of a hydraulic relief valve. Chin J Eng, 2016, 38(1): 135馬威, 馬飛, 周志鴻, 等. 液壓溢流閥的失穩分析和實驗研究. 工程科學學報, 2016, 38(1):135 [17] Basavaraj V Hubballi, Vilas B Sondur. Modeling and simulation of conical poppet type relief valve with damping spool. Hidraulica, 2016(1): 13 [18] Xie H Y, Lu Z W, Zhang Y L. Influence of feed rate for hard turning on stress of machined surface. Bearing, 2014(9): 20 doi: 10.3969/j.issn.1000-3762.2014.09.007謝華永, 盧振偉, 張玉玲. 硬車削進給量對加工表面應力的影響. 軸承, 2014(9):20 doi: 10.3969/j.issn.1000-3762.2014.09.007 [19] Duan C Z, Zhang F Y, Kou W N, et al. Martensitic transformation of surface white layer in high speed hard cutting. J Jilin Univ Eng Technol Ed, 2019, 49(5): 1575段春爭, 張方圓, 寇文能, 等. 高速硬切削表面白層馬氏體相變. 吉林大學學報(工學版), 2019, 49(5):1575 [20] Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響. 工程科學學報, 2019, 41(7):929 [21] Finesso R, Rundo M. Numerical and experimental investigation on a conical poppet relief valve with flow force compensation. Int J Fluid Power, 2017, 18(2): 111 doi: 10.1080/14399776.2017.1296740 [22] Shi L, Zhang Y Z, Wang Q H. Research on noise reduction of pilot relief valve. Chin Hydraul Pneumatics, 2015(4): 122 doi: 10.11832/j.issn.1000-4858.2015.04.029石磊, 張艷哲, 王清漢. 先導式溢流閥噪聲控制技術研究. 液壓與氣動, 2015(4):122 doi: 10.11832/j.issn.1000-4858.2015.04.029 [23] Huang C Z, Long H, Chen Y H. Research on measuring device for the length of cylindrical bore with inner conical bore. Mach Des Manuf, 2016(8): 138 doi: 10.3969/j.issn.1001-3997.2016.08.038黃長征, 龍慧, 陳英懷. 一種里端帶內錐孔的圓柱孔長度測量裝置的研制. 機械設計與制造, 2016(8):138 doi: 10.3969/j.issn.1001-3997.2016.08.038 [24] Han Y S. Establishment and analysis of formulas using sine protractor to measure diameter of inner cone bore and outer cone. Tool Eng, 2010, 44(4): 101 doi: 10.3969/j.issn.1000-7008.2010.04.030韓英樹. 正弦規測量內、外錐直徑尺寸公式的建立與分析. 工具技術, 2010, 44(4):101 doi: 10.3969/j.issn.1000-7008.2010.04.030 [25] Bi C, Fang J G, Min L X, et al. Study on precision measuring system for inner cone angle of fuel nozzles. Mech Sci Technol Aerosp Eng, 2019, 38(3): 465畢超, 房建國, 閔羅肖, 等. 燃油噴嘴內腔錐角的精密測量系統研究. 機械科學與技術, 2019, 38(3):465 -