Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport
-
摘要: 鋁鎮靜鋼液澆注過程中,浸入式水口耐材內壁特征受到鋼液侵蝕和夾雜物聚集影響,從近光滑壁面逐漸向多孔耐火材料壁面和含結瘤物的粗糙結瘤壁面轉變,壁面形貌的變化影響邊界層流場結構和氧化鋁夾雜物的輸運。采用物理模擬的方法在浸入式水口模型內壁鑲嵌多孔耐火材料結構和含結瘤物耐材壁面結構,結合粒子圖像測速技術研究不同特征壁面附近流場邊界層。使用MATLAB耦合流場測速結果和氧化鋁夾雜物運動數學模型,研究了不同特征壁面的流場邊界層中氧化鋁夾雜物的運動軌跡。使用象限分析法確定了浸入式水口邊界層流場存在上拋和下掃事件。氧化鋁夾雜物位于下掃事件區域時,朝向壁面運動,粒徑為1 μm的氧化鋁夾雜物在下掃事件中運動軌跡更接近壁面,增加了沉積的可能性;氧化鋁夾雜物位于上拋事件區域時,遠離壁面運動。多孔耐火材料壁面和結瘤壁面邊界層內氧化鋁夾雜物運動幅度大于光滑壁面邊界層流場內氧化鋁夾雜物運動幅度。壁面狀態由近光滑壁面轉變為多孔耐火材料和結瘤壁面時,流場邊界層中下掃事件平面占比由10.17%增加到39.77%,上拋事件平面占比由32.96%減小到9.24%;同時,流場邊界層中下掃事件發生的概率由25.83%增加到28.24%,這將加速氧化鋁夾雜物在多孔耐火材料和結瘤壁面的沉積進程。Abstract: During the Al-killed steel continuous casting process, the molten steel corrosion and the accumulation of alumina inclusion deposits affect the submerged entry nozzle (SEN) wall surface, including the surface morphologies of the smooth wall, porous refractory wall, and clogged wall. The SEN wall surface morphology affects the boundary layer structure and alumina inclusions transport. In this study, a physical modeling method was adopted, and the surface morphologies simulation was realized by filling up the natural porous refractory material and inserting the real clog material in the polymethyl methacrylate SEN model. The velocity in the boundary layer was measured using the particle image velocimetry (PIV) technology, and the alumina inclusions transport path in the boundary layer was calculated by MATLAB software. The MATLAB codes combined the velocity data from the PIV measurement results and the inclusion transport equation. The four-quadrant analysis showed that sweep and ejection events existed in the boundary layer. The fluctuations of the velocity and the turbulent kinetic energy in the normal direction were increased in the porous refractory and the clogged wall boundary layer when the sweep and ejection events existed. The transport of the alumina inclusions with a diameter of 1–15 μm was affected by the ejection and the sweep events. The alumina inclusions moved toward the boundary in the sweep event. During the sweep event, the transport path of alumina inclusions with 1 μm diameter was close to the boundary; the alumina inclusions were more easily attached to the boundary. The alumina inclusions escaped from the boundary in the ejection event. In the porous refractory and the clogged walls, the alumina inclusion transport path in the normal direction was increased. When the SEN wall’s morphologies changed from smooth wall to porous refractory wall and clogged wall, the sweep event area proportion increased from 10.17% to 39.77%, and the ejection event area proportion decreased from 32.96% to 9.24%. Moreover, the sweep event’s probability increased from 25.83% to 28.24% when the morphologies of the SEN wall changed from smooth wall to porous refractory wall and clogged wall, which will increase the alumina inclusion deposition rate in the porous refractory wall and the clogged wall boundary.
-
圖 6 不同壁面狀態下,在距離壁面0.5 mm處,1 s時間內的邊界層流場法向和流向脈動速度象限統計。(a)光滑壁面;(b)多孔材料壁面;(c)結瘤壁面;(d)下掃事件與上拋事件概率統計
Figure 6. u' and v' distribution at a distance of 0.5 mm to the boundary during one second in the different wall morphologies: (a) the smooth wall; (b) the porous wall; (c) the refractory wall; (d) the probability statistic of the sweep and ejection events
表 1 原型與模型流體物理性質和浸入式水口幾何參數
Table 1. Physical properties of the fluids in prototype and physical model and the SEN geometric parameters
Parameter Value Molten steel density, ρP/(kg·m?3) 7020 Molten steel viscosity, μP/(Pa?s) 0.0067 Water density (25°C), ρm/(kg·m?3) 997.074 Water viscosity (25°C), μm/(Pa?s) 8.937×10?4 Diameter of inner nozzle/mm 40 Flow rate/(L·min?1) 45 www.77susu.com -
參考文獻
[1] Lee J H, Kang M H, Kim S K, et al. Influence of Al/Ti ratio in Ti? ULC steel and refractory components of submerged entry nozzle on formation of clogging deposits. ISIJ Int, 2019, 59(5): 749 doi: 10.2355/isijinternational.ISIJINT-2018-672 [2] Deng Z Y, Zhu M Y, Zhou Y L, et al. Attachment of alumina on the wall of submerged entry nozzle during continuous casting of Al-killed steel. Metall Mater Trans B, 2016, 47(3): 2015 doi: 10.1007/s11663-016-0624-y [3] Ni P Y, Jonsson L T I, Ersson M, et al. Transport and deposition of non-metallic inclusions in steel flows- a comparison of different model predictions to pilot plant experiment data. Steel Res Int, 2017, 88(12): 1700155 doi: 10.1002/srin.201700155 [4] Lee S J, Lee S H. Flow field analysis of a turbulent boundary layer over a riblet surface. Exp Fluids, 2001, 30(2): 153 doi: 10.1007/s003480000150 [5] Walsh M, Lindemann A. Optimization and application of riblets for turbulent drag reduction // 22nd Aerospace Sciences Meeting. Reno, 1984: 1. [6] Chang Y F, Jiang N. Experimental study on coherent structure passive control and drag reduction in turbulent boundary layer with grooved surface. J Aerosp Power, 2008, 23(5): 788常躍峰, 姜楠. 溝槽壁湍流多尺度相干結構實驗研究. 航空動力學報, 2008, 23(5):788 [7] Minier J P, Pozorski J. Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration. Cham: Springer International Publishing, 2017. [8] Soldati A, Marchioli C. Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. Int J Multiphase Flow, 2009, 35(9): 827 doi: 10.1016/j.ijmultiphaseflow.2009.02.016 [9] Tehovnik F, Burja J, Arh B, et al. Submerged entry nozzle clogging during continuous casting of Al-killed steel. Metalurgija, 2015, 54(2): 371 [10] Barati H, Wu M, Kharicha A, et al. A transient model for nozzle clogging. Powder Technol, 2018, 329: 181 doi: 10.1016/j.powtec.2018.01.053 [11] Yang S Q. Particle Image Velocimetry Investigation of Coherent Structures in Wall-bounded Turbulent Flows and Their Passive Control by Riblets [Dissertation]. Tianjin: Tianjin University, 2015.楊紹瓊. 壁湍流相干結構及其溝槽被動控制的PIV實驗研究[學位論文]. 天津: 天津大學, 2015. [12] Chang Y F, Jiang N. Hot-wire measurements of passive control for coherent structure in the turbulent boundary layer of a groove-riblet surface. J Harbin Eng Univ, 2008, 29(7): 705 doi: 10.3969/j.issn.1006-7043.2008.07.012常躍峰, 姜楠. 溝槽壁面湍流相干結構被動控制的熱線測量. 哈爾濱工程大學學報, 2008, 29(7):705 doi: 10.3969/j.issn.1006-7043.2008.07.012 [13] Xu C X. Coherent structures and drag-reduction mechanism in wall turbulence. Adv Mech, 2015, 45(1): 111許春曉. 壁湍流相干結構和減阻控制機理研究. 力學進展, 2015, 45(1):111 [14] Li S, Yang S Q, Jiang N. TRPIV measurement of drag-reduction in the turbulent boundary layer over riblets plate. Chin J Theoret Appl Mech, 2013, 45(2): 183 doi: 10.6052/0459-1879-12-262李山, 楊紹瓊, 姜楠. 溝槽面湍流邊界層減阻的TRPIV測量. 力學學報, 2013, 45(2):183 doi: 10.6052/0459-1879-12-262 [15] Li S, Jiang N, Yang S Q. Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry. Acta Phys Sinica, 2019, 68(7): 188李山, 姜楠, 楊紹瓊. 正弦波溝槽對湍流邊界層相干結構影響的TR-PIV實驗研究. 物理學報, 2019, 68(7):188 [16] Real-Ramirez C A, Carvajal-Mariscal I, Sanchez-Silva F, et al. Three-dimensional flow behavior inside the submerged entry nozzle. Metall Mater Trans B, 2018, 49(4): 1644 doi: 10.1007/s11663-018-1281-0 [17] Real C, Miranda R, Vilchis C, et al. Transient internal flow characterization of a bifurcated submerged entry nozzle. ISIJ Int, 2006, 46(8): 1183 doi: 10.2355/isijinternational.46.1183 [18] Zhang K T, Liu J H, Cui H, et al. Effect of SEN on fluid flow and surface fluctuation in a continuous casting slab mold. Chin J Eng, 2018, 40(6): 697張開天, 劉建華, 崔衡, 等. 浸入式水口對結晶器鋼水流動與液面波動的影響. 工程科學學報, 2018, 40(6):697 [19] Fei P, Min Y, Liu C J, et al. Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions. Int J Miner Metall Mater, 2019, 26(2): 186 doi: 10.1007/s12613-019-1723-y [20] Ni P Y, Ersson M, Jonsson L T I, et al. A study on the nonmetallic inclusion motions in a swirling flow submerged entry nozzle in a new cylindrical tundish design. Metall Mater Trans B, 2018, 49(2): 723 doi: 10.1007/s11663-017-1162-y [21] Geng D Q, Lei H, Su Z J, et al. Fluid flow and inclusion behavior in the nozzle with a rotating magnetic field during continuous casting. J Univ Sci Technol Beijing, 2012, 34(5): 519耿佃橋, 雷洪, 蘇志堅, 等. 連鑄電磁旋流水口流體流動和夾雜物行為. 北京科技大學學報, 2012, 34(5):519 [22] Wang H W. Fluid Mechanics as I Understand It. 2nd Ed. Beijing: National Defense Industry Press, 2019.王洪偉. 我所理解的流體力學. 2版. 北京: 國防工業出版社, 2019. [23] Kim H T, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbulent boundary layer. J Fluid Mech, 1971, 50(1): 133 doi: 10.1017/S0022112071002490 [24] Yang Y, J?nsson P G, Ersson M, et al. Inclusion behavior under a swirl flow in a submerged entry nozzle and mold. Steel Res Int, 2015, 86(4): 341 doi: 10.1002/srin.201300462 [25] Salgado U D, Wei? C, Michelic S K, et al. Fluid force-induced detachment criteria for nonmetallic inclusions adhered to a refractory/molten steel interface. Metall Mater Trans B, 2018, 49(4): 1632 doi: 10.1007/s11663-018-1271-2 -