<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響

華承健 王敏 張孟昀 鄭瑞軒 包燕平

華承健, 王敏, 張孟昀, 鄭瑞軒, 包燕平. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響[J]. 工程科學學報, 2021, 43(7): 925-934. doi: 10.13374/j.issn2095-9389.2020.05.05.001
引用本文: 華承健, 王敏, 張孟昀, 鄭瑞軒, 包燕平. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響[J]. 工程科學學報, 2021, 43(7): 925-934. doi: 10.13374/j.issn2095-9389.2020.05.05.001
HUA Cheng-jian, WANG Min, ZHANG Meng-yun, ZHENG Rui-xuan, BAO Yan-ping. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport[J]. Chinese Journal of Engineering, 2021, 43(7): 925-934. doi: 10.13374/j.issn2095-9389.2020.05.05.001
Citation: HUA Cheng-jian, WANG Min, ZHANG Meng-yun, ZHENG Rui-xuan, BAO Yan-ping. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport[J]. Chinese Journal of Engineering, 2021, 43(7): 925-934. doi: 10.13374/j.issn2095-9389.2020.05.05.001

浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響

doi: 10.13374/j.issn2095-9389.2020.05.05.001
基金項目: 國家自然科學基金資助項目(51774031);鋼鐵冶金新技術國家重點實驗室基金資助項目(41619018);內蒙古自治區科技成果轉化下劃資金項目(NM2019BT001)
詳細信息
    通訊作者:

    E-mail:wangmin@ustb.edu.cn

  • 中圖分類號: O357.4

Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport

More Information
  • 摘要: 鋁鎮靜鋼液澆注過程中,浸入式水口耐材內壁特征受到鋼液侵蝕和夾雜物聚集影響,從近光滑壁面逐漸向多孔耐火材料壁面和含結瘤物的粗糙結瘤壁面轉變,壁面形貌的變化影響邊界層流場結構和氧化鋁夾雜物的輸運。采用物理模擬的方法在浸入式水口模型內壁鑲嵌多孔耐火材料結構和含結瘤物耐材壁面結構,結合粒子圖像測速技術研究不同特征壁面附近流場邊界層。使用MATLAB耦合流場測速結果和氧化鋁夾雜物運動數學模型,研究了不同特征壁面的流場邊界層中氧化鋁夾雜物的運動軌跡。使用象限分析法確定了浸入式水口邊界層流場存在上拋和下掃事件。氧化鋁夾雜物位于下掃事件區域時,朝向壁面運動,粒徑為1 μm的氧化鋁夾雜物在下掃事件中運動軌跡更接近壁面,增加了沉積的可能性;氧化鋁夾雜物位于上拋事件區域時,遠離壁面運動。多孔耐火材料壁面和結瘤壁面邊界層內氧化鋁夾雜物運動幅度大于光滑壁面邊界層流場內氧化鋁夾雜物運動幅度。壁面狀態由近光滑壁面轉變為多孔耐火材料和結瘤壁面時,流場邊界層中下掃事件平面占比由10.17%增加到39.77%,上拋事件平面占比由32.96%減小到9.24%;同時,流場邊界層中下掃事件發生的概率由25.83%增加到28.24%,這將加速氧化鋁夾雜物在多孔耐火材料和結瘤壁面的沉積進程。

     

  • 圖  1  鋼液澆注過程浸入式水口壁面特征變化示意圖。(a)近光滑壁面;(b)多孔耐火材料壁面;(c)結瘤壁面

    Figure  1.  Schematic of SEN wall surface changing morphologies during casting: (a) smooth wall;(b) porous refractory wall;(c) clogged wall

    圖  2  邊界層流場測速實驗裝置示意圖

    Figure  2.  Schematic of the boundary layer velocity measurements

    圖  3  邊界層流場內上拋、下掃事件示意圖

    Figure  3.  Schematic of the ejection and sweep events in boundary layer

    圖  4  邊界層流場速度特征。(a)近光滑壁面;(b)多孔耐火材料壁面;(c)粗糙結瘤物壁面;(d)速度分布

    Figure  4.  Boundary layer velocity: (a) smooth wall;(b) porous refractory wall;(c) clogged wall; (d) velocity distribution

    圖  5  法向湍流動能云圖。(a)近光滑壁面;(b)多孔耐火材料壁面;(c)結瘤壁面;(d)三種壁面條件下平均法向湍流動能大小

    Figure  5.  Rxx contour: (a) smooth wall; (b) porous refractory wall; (c) clogged wall; (d) average Rxx distribution

    圖  6  不同壁面狀態下,在距離壁面0.5 mm處,1 s時間內的邊界層流場法向和流向脈動速度象限統計。(a)光滑壁面;(b)多孔材料壁面;(c)結瘤壁面;(d)下掃事件與上拋事件概率統計

    Figure  6.  u' and v' distribution at a distance of 0.5 mm to the boundary during one second in the different wall morphologies: (a) the smooth wall; (b) the porous wall; (c) the refractory wall; (d) the probability statistic of the sweep and ejection events

    圖  7  壁面附近上拋、下掃事件的平面分布。(a)近光滑壁面;(b)多孔壁面;(c)結瘤壁面;(d)三種壁面條件流場邊界層內上拋、下掃事件平面占比

    Figure  7.  Sweep and ejection events distribution near the wall boundary: (a) smooth wall;(b) porous refractory wall;(c) clogged wall; (d) area proportion of the sweep and the ejection events in the boundary layer

    圖  8  氧化鋁夾雜物在多孔耐火材料壁面邊界層流場不同事件中的運動軌跡。(a)下掃事件;(b)上拋事件

    Figure  8.  Alumina inclusions transport path in the porous refractory wall boundary layer: (a) the sweep event; (b) the ejection event

    圖  9  粒徑1 μm的夾雜物在邊界層流場不同事件中的運動軌跡。(a)下掃事件;(b)上拋事件

    Figure  9.  Transport path of alumina inclusions with 1 μm diameter in the boundary layer under different events: (a) the sweep event; (b) the ejection event

    圖  10  邊界層內氧化鋁夾雜物運動機理示意圖。(a)近光滑壁面;(b)多孔耐火材料壁面和結瘤壁面

    Figure  10.  Schematic of the alumina inclusion transport in the boundary layer: (a) smooth wall;(b) porous refractory and clogged wall

    表  1  原型與模型流體物理性質和浸入式水口幾何參數

    Table  1.   Physical properties of the fluids in prototype and physical model and the SEN geometric parameters

    ParameterValue
    Molten steel density, ρP/(kg·m?3)7020
    Molten steel viscosity, μP/(Pa?s)0.0067
    Water density (25°C), ρm/(kg·m?3)997.074
    Water viscosity (25°C), μm/(Pa?s)8.937×10?4
    Diameter of inner nozzle/mm40
    Flow rate/(L·min?1)45
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Lee J H, Kang M H, Kim S K, et al. Influence of Al/Ti ratio in Ti? ULC steel and refractory components of submerged entry nozzle on formation of clogging deposits. ISIJ Int, 2019, 59(5): 749 doi: 10.2355/isijinternational.ISIJINT-2018-672
    [2] Deng Z Y, Zhu M Y, Zhou Y L, et al. Attachment of alumina on the wall of submerged entry nozzle during continuous casting of Al-killed steel. Metall Mater Trans B, 2016, 47(3): 2015 doi: 10.1007/s11663-016-0624-y
    [3] Ni P Y, Jonsson L T I, Ersson M, et al. Transport and deposition of non-metallic inclusions in steel flows- a comparison of different model predictions to pilot plant experiment data. Steel Res Int, 2017, 88(12): 1700155 doi: 10.1002/srin.201700155
    [4] Lee S J, Lee S H. Flow field analysis of a turbulent boundary layer over a riblet surface. Exp Fluids, 2001, 30(2): 153 doi: 10.1007/s003480000150
    [5] Walsh M, Lindemann A. Optimization and application of riblets for turbulent drag reduction // 22nd Aerospace Sciences Meeting. Reno, 1984: 1.
    [6] Chang Y F, Jiang N. Experimental study on coherent structure passive control and drag reduction in turbulent boundary layer with grooved surface. J Aerosp Power, 2008, 23(5): 788

    常躍峰, 姜楠. 溝槽壁湍流多尺度相干結構實驗研究. 航空動力學報, 2008, 23(5):788
    [7] Minier J P, Pozorski J. Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration. Cham: Springer International Publishing, 2017.
    [8] Soldati A, Marchioli C. Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. Int J Multiphase Flow, 2009, 35(9): 827 doi: 10.1016/j.ijmultiphaseflow.2009.02.016
    [9] Tehovnik F, Burja J, Arh B, et al. Submerged entry nozzle clogging during continuous casting of Al-killed steel. Metalurgija, 2015, 54(2): 371
    [10] Barati H, Wu M, Kharicha A, et al. A transient model for nozzle clogging. Powder Technol, 2018, 329: 181 doi: 10.1016/j.powtec.2018.01.053
    [11] Yang S Q. Particle Image Velocimetry Investigation of Coherent Structures in Wall-bounded Turbulent Flows and Their Passive Control by Riblets [Dissertation]. Tianjin: Tianjin University, 2015.

    楊紹瓊. 壁湍流相干結構及其溝槽被動控制的PIV實驗研究[學位論文]. 天津: 天津大學, 2015.
    [12] Chang Y F, Jiang N. Hot-wire measurements of passive control for coherent structure in the turbulent boundary layer of a groove-riblet surface. J Harbin Eng Univ, 2008, 29(7): 705 doi: 10.3969/j.issn.1006-7043.2008.07.012

    常躍峰, 姜楠. 溝槽壁面湍流相干結構被動控制的熱線測量. 哈爾濱工程大學學報, 2008, 29(7):705 doi: 10.3969/j.issn.1006-7043.2008.07.012
    [13] Xu C X. Coherent structures and drag-reduction mechanism in wall turbulence. Adv Mech, 2015, 45(1): 111

    許春曉. 壁湍流相干結構和減阻控制機理研究. 力學進展, 2015, 45(1):111
    [14] Li S, Yang S Q, Jiang N. TRPIV measurement of drag-reduction in the turbulent boundary layer over riblets plate. Chin J Theoret Appl Mech, 2013, 45(2): 183 doi: 10.6052/0459-1879-12-262

    李山, 楊紹瓊, 姜楠. 溝槽面湍流邊界層減阻的TRPIV測量. 力學學報, 2013, 45(2):183 doi: 10.6052/0459-1879-12-262
    [15] Li S, Jiang N, Yang S Q. Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry. Acta Phys Sinica, 2019, 68(7): 188

    李山, 姜楠, 楊紹瓊. 正弦波溝槽對湍流邊界層相干結構影響的TR-PIV實驗研究. 物理學報, 2019, 68(7):188
    [16] Real-Ramirez C A, Carvajal-Mariscal I, Sanchez-Silva F, et al. Three-dimensional flow behavior inside the submerged entry nozzle. Metall Mater Trans B, 2018, 49(4): 1644 doi: 10.1007/s11663-018-1281-0
    [17] Real C, Miranda R, Vilchis C, et al. Transient internal flow characterization of a bifurcated submerged entry nozzle. ISIJ Int, 2006, 46(8): 1183 doi: 10.2355/isijinternational.46.1183
    [18] Zhang K T, Liu J H, Cui H, et al. Effect of SEN on fluid flow and surface fluctuation in a continuous casting slab mold. Chin J Eng, 2018, 40(6): 697

    張開天, 劉建華, 崔衡, 等. 浸入式水口對結晶器鋼水流動與液面波動的影響. 工程科學學報, 2018, 40(6):697
    [19] Fei P, Min Y, Liu C J, et al. Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions. Int J Miner Metall Mater, 2019, 26(2): 186 doi: 10.1007/s12613-019-1723-y
    [20] Ni P Y, Ersson M, Jonsson L T I, et al. A study on the nonmetallic inclusion motions in a swirling flow submerged entry nozzle in a new cylindrical tundish design. Metall Mater Trans B, 2018, 49(2): 723 doi: 10.1007/s11663-017-1162-y
    [21] Geng D Q, Lei H, Su Z J, et al. Fluid flow and inclusion behavior in the nozzle with a rotating magnetic field during continuous casting. J Univ Sci Technol Beijing, 2012, 34(5): 519

    耿佃橋, 雷洪, 蘇志堅, 等. 連鑄電磁旋流水口流體流動和夾雜物行為. 北京科技大學學報, 2012, 34(5):519
    [22] Wang H W. Fluid Mechanics as I Understand It. 2nd Ed. Beijing: National Defense Industry Press, 2019.

    王洪偉. 我所理解的流體力學. 2版. 北京: 國防工業出版社, 2019.
    [23] Kim H T, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbulent boundary layer. J Fluid Mech, 1971, 50(1): 133 doi: 10.1017/S0022112071002490
    [24] Yang Y, J?nsson P G, Ersson M, et al. Inclusion behavior under a swirl flow in a submerged entry nozzle and mold. Steel Res Int, 2015, 86(4): 341 doi: 10.1002/srin.201300462
    [25] Salgado U D, Wei? C, Michelic S K, et al. Fluid force-induced detachment criteria for nonmetallic inclusions adhered to a refractory/molten steel interface. Metall Mater Trans B, 2018, 49(4): 1632 doi: 10.1007/s11663-018-1271-2
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  1938
  • HTML全文瀏覽量:  1045
  • PDF下載量:  117
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-05
  • 網絡出版日期:  2020-12-29
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回