<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于深度循環神經網絡的協作機器人動力學誤差補償

徐征 張弓 汪火明 侯至丞 楊文林 梁濟民 王建 顧星

徐征, 張弓, 汪火明, 侯至丞, 楊文林, 梁濟民, 王建, 顧星. 基于深度循環神經網絡的協作機器人動力學誤差補償[J]. 工程科學學報, 2021, 43(7): 995-1002. doi: 10.13374/j.issn2095-9389.2020.04.30.003
引用本文: 徐征, 張弓, 汪火明, 侯至丞, 楊文林, 梁濟民, 王建, 顧星. 基于深度循環神經網絡的協作機器人動力學誤差補償[J]. 工程科學學報, 2021, 43(7): 995-1002. doi: 10.13374/j.issn2095-9389.2020.04.30.003
XU Zheng, ZHANG Gong, WANG Huo-ming, HOU Zhi-cheng, YANG Wen-lin, LIANG Ji-min, WANG Jian, GU Xing. Error compensation of collaborative robot dynamics based on deep recurrent neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 995-1002. doi: 10.13374/j.issn2095-9389.2020.04.30.003
Citation: XU Zheng, ZHANG Gong, WANG Huo-ming, HOU Zhi-cheng, YANG Wen-lin, LIANG Ji-min, WANG Jian, GU Xing. Error compensation of collaborative robot dynamics based on deep recurrent neural network[J]. Chinese Journal of Engineering, 2021, 43(7): 995-1002. doi: 10.13374/j.issn2095-9389.2020.04.30.003

基于深度循環神經網絡的協作機器人動力學誤差補償

doi: 10.13374/j.issn2095-9389.2020.04.30.003
基金項目: 國家重點研發計劃資助項目(2018YFA0902903);國家自然科學基金資助項目(62073092);廣東省自然科學基金資助項目(2021A1515012638);廣州市基礎研究計劃資助項目(202002030320)
詳細信息
    通訊作者:

    E-mail: gong.zhang@giat.ac.cn

  • 中圖分類號: TP242.2

Error compensation of collaborative robot dynamics based on deep recurrent neural network

More Information
  • 摘要: 由于協作機器人的結構比普通工業機器人更為輕巧,一般動力學模型所忽略的復雜特性占比較大,導致協作機器人的計算預測力矩誤差較大。據此提出在考慮重力、科里奧利力、慣性力和摩擦力等的基礎上,采用深度循環神經網絡中的長短期記憶模型對自主研發的六自由度協作機器人動力學模型進行誤差補償。在實驗中采用優化后的基于傅里葉級數的激勵軌跡驅動機器人運動,以電機電流估算關節力矩,獲取的原始數據用來訓練長短期記憶模型(LSTM)補償網絡。網絡的訓練結果和評價指標為預測力矩相比實際力矩的均方根誤差。計算與實驗結果表明,補償后的協作機器人動力學模型對實際力矩具有更好的預測效果,各軸預測力矩與實際力矩的均方根誤差相比于未補償的傳統模型降低了61.8%至78.9%不等,表明了文中所提出補償方法的有效性。

     

  • 圖  1  協作機器人三維模型圖

    Figure  1.  3D model of the collaborative robot

    圖  2  協作機器人D-H模型圖

    Figure  2.  D-H structure of the collaborative robot

    圖  3  參數辨識所用激勵軌跡。(a)位移;(b)速度;(c)加速度

    Figure  3.  Excitation trajectory for parameter identification: (a) position; (b) velocity; (c) acceleration

    圖  4  LSTM隱含層細胞結構

    Figure  4.  LSTM cell of hidden layer

    圖  5  基于LSTM機器人動力學補償的技術框架

    Figure  5.  Structure of LSTM-based robot dynamic compensation

    圖  6  測試集的激勵軌跡。(a)位移;(b)速度;(c)加速度

    Figure  6.  Excitation trajectory of test set: (a) position; (b) velocity; (c) acceleration

    圖  7  網絡訓練步數與均方根損失

    Figure  7.  Epochs vs RMS loss

    圖  8  軸5計算力矩(未經補償)、實際力矩和誤差

    Figure  8.  Calculated torque (uncompensated), real toruqe, and errors of axis-5

    圖  9  軸5經過LSTM網絡補償后的計算力矩、實際力矩和誤差

    Figure  9.  Calculated torque with LSTM compensation, real torque, and errors of axis-5

    表  1  網絡主要超參數值

    Table  1.   Hyperparameters of the net

    ParameterValue
    Time step100
    Batch size50
    Input size12
    Output size3
    Cell size60
    Total layer3
    Learning rate0.05
    下載: 導出CSV

    表  2  各關節計算力矩相對實際力矩的均方根誤差

    Table  2.   RMS error of calculated torque between real value

    AxisUncompensated/(N·m)Compensated/(N·m)
    43.611.21
    54.841.02
    66.102.33
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] An C H, Atkeson C G, Hollerbach J. Model-Based Control of a Robot Manipulator. Cambridge: MIT Press, 1988
    [2] Xiang W W K, Yan S Z. Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification. Acta Astron, 2020, 169: 158 doi: 10.1016/j.actaastro.2020.01.011
    [3] Norouzzadeh S, Lorenz T, Hirche S. Towards safe physical human-robot interaction: An online optimal control scheme // The 21st IEEE International Symposium on Robot and Human Interactive Communication. Paris, 2012: 503
    [4] Craig J J. Introduction to Robotics: Mechanics and Control. 4th Ed. Pearson, 2017
    [5] Siciliano B, Sciavicco L, Villani L, et al. Robotics: Modelling, Planning and Control. London: Springer, 2015
    [6] Tao Y, Zhao F, Cao J J. Research on friction characteristics identification and compensation of cooperative robot's joints. Modular Mach Tool Autom Manuf Tech, 2019(4): 28

    陶岳, 趙飛, 曹巨江. 協作機器人關節摩擦特性辨識與補償技術. 組合機床與自動化加工技術, 2019(4):28
    [7] Simoni L, Beschi M, Legnani G, et al. On the inclusion of temperature in the friction model of industrial robots. IFAC-PapersOnLine, 2017, 50(1): 3482 doi: 10.1016/j.ifacol.2017.08.933
    [8] Ossadnik D, Guadarrama-Olvera J R, Dean-Leon E, et al. Adaptive friction compensation for humanoid robots without joint-torque sensors // IEEE-RAS International Conference on Humanoid Robots (Humanoids). Beijing, 2018: 980
    [9] Zhang T, Hong J D, Li Q F, et al. Wave friction correction method for a robot based on BP neural network. Chin J Eng, 2019, 41(8): 1085

    張鐵, 洪景東, 李秋奮, 等. 基于BP神經網絡的機器人波動摩擦力矩修正方法. 工程科學學報, 2019, 41(8):1085
    [10] Vitiello V, Tornambe A. Adaptive compensation of modeled friction using a RBF neural network approximation // 46th IEEE Conference on Decision and Control. New Orleans, 2007: 4699
    [11] Qiu L K, Zhao Y Z, Zhang Y X. Adaptive friction identification and compensation based on RBF neural network for the linear inverted pendulum // Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Harbin, 2011: 385
    [12] Yu W, Heredia J A. PD control of robot with RBF networks compensation // Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. Como, 2000: 329
    [13] Sun C G, Ma X F, Tan J L. Calculation of inertia parameter of robot manipulator. Robot, 1990, 12(2): 19

    孫昌國, 馬香峰, 譚吉林. 機器人操作器慣性參數的計算. 機器人, 1990, 12(2):19
    [14] Armstrong B, Khatib O, Burdick J. The explicit dynamic model and inertial parameters of the PUMA 560 arm // Proceedings of 1986 IEEE International Conference on Robotics and Automation. San Francisco, 1986: 510
    [15] Olsen M, Petersen H G. A new method for estimating parameters of a dynamic robot model. IEEE Trans Rob Autom, 2001, 17(1): 95 doi: 10.1109/70.917088
    [16] Khalil W, Guegan S. Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans Rob, 2004, 20(4): 754 doi: 10.1109/TRO.2004.829473
    [17] Swevers J, Naumer B, Pieters S, et al. An experimental robot load identification method for industrial application // Experimental Robotics VIII. Springer, Berlin, Heidelberg, 2003: 318
    [18] Ding Y D, Chen B, Wu H T, et al. An identification method of industrial robot’s dynamic parameters. J South China Univ Technol Nat Sci Ed, 2015, 43(3): 49

    丁亞東, 陳柏, 吳洪濤, 等. 一種工業機器人動力學參數的辨識方法. 華南理工大學學報(自然科學版), 2015, 43(3):49
    [19] Khalil W, Restrepo P. An efficient algorithm for the calculation of the filtered dynamic model of robots // Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis, 1996: 323
    [20] Liu Z S, Chen E W, Gan F J. Review of some methods for identifying inertial parameters of robots and their development. J Hefei Univ Technol Nat Sci, 2005, 28(9): 998

    劉正士, 陳恩偉, 干方建. 機器人慣性參數辨識的若干方法及進展. 合肥工業大學學報(自然科學版), 2005, 28(9):998
    [21] Yoshida K, Khalil W. Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters. Int J Rob Res, 2000, 19(5): 498 doi: 10.1177/02783640022066996
    [22] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans Evol Comput, 2014, 18(4): 577 doi: 10.1109/TEVC.2013.2281535
    [23] Graves A. Long Short-Term Memory. Berlin: Springer, 2012: 1735
    [24] Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures // Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lile, France, 2015: 2342
    [25] Kingma D, Ba J. Adam: A method for stochastic optimization //International Conference for Learning Representations. San Diego, 2015: 1
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  1806
  • HTML全文瀏覽量:  773
  • PDF下載量:  124
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-30
  • 網絡出版日期:  2020-07-21
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回