-
摘要: 為了冶煉不同氧含量的碳素船體鋼,通過機械性能試驗和周浸試驗研究了鋼中氧含量對鋼材腐蝕性能和機械性能的影響。結果表明,在連鑄生產許可的氧范圍內,隨著鋼水脫氧程度的減弱,鋼中氧質量分數增加,鋼材的平均腐蝕率略有下降,而耐點蝕性能有較明顯增強,變化曲線的高氧端比低氧端平均點蝕深度下降約22.7%。弱脫氧鋼的機械性能符合規范要求,可達到D級鋼水平。分析認為,氧提高鋼材耐蝕性的原因主要是固溶氧可提高鐵的熱力學穩定性,提高了蝕孔內鐵的腐蝕電位,降低了蝕坑擴展速度。氧作為耐蝕元素應用可以顯著降低耐蝕鋼的成本,提高經濟性。Abstract: Carbon steels are widely used structural materials in vessel and marine engineering. Many studies acknowledge that the pitting corrosion of these materials are heavily subject to their metallurgic factors. Although much attention has been paid on inclusions and microstructure, little had been dealt with metallurgical processing including deoxidizing degrees. Deoxidization is one of the most important processes in steelmaking. Stronger deoxidizing degree helps to improve steel’s mechanical property and welding property. However, some studies demonstrated that weaker deoxidizing degree tends to improve pitting corrosion resistance. Manufacturing ordinary structural steels nowadays have been changed from mould casting to continuous casting. However, the deoxidizing degree of continuous casting steel may be different due to different deoxidization techniques. Particularly, the oxygen content in current steels has a fairly low level, which may be harmful to pitting corrosion resistance of steels. In this study, the influence of oxygen content in carbon hull steels on corrosion and mechanical properties of steel was investigated by mechanical properties tests and alternate immersion test. Results show increased oxygen content when there is duction of deoxidization of molten steel in the range permitted by continuous casting. Interestingly, the average corrosion rate of steel slightly decreases and an obvious enhancement of resistance to pitting is observed. The average pit depth corresponding to the high oxygen side of the pit depth-oxygen curve is about 22.7% lower than that of the low oxygen side. The mechanical and cold bending properties of tested steels are able to meet technical code requirements and can reach the level of Grade D hull steel. Findings of this study suggest that solid solution oxygen in steel plays a major role in improving pitting resistance. It can enhance the thermodynamic stability of iron, elevate the corrosion potential of the iron in the pit, and reduce the pitting rate. Therefore, using oxygen as a corrosion resistant element is an economic strategy to reduce the cost of corrosion resistant steel.
-
Key words:
- deoxidization /
- pitting /
- corrosion resistant steel /
- solid solution oxygen /
- thermodynamic stability
-
表 1 試驗用鋼的化學成分(質量分數)
Table 1. Component of experimental steels (mass fraction)
% Test steels C Si Mn P S O CCS(B) ≤0.21 ≤0.50 ≥0.60 ≤0.035 ≤0.035 1-1–1-5 0.069–0.204 0.18–0.28 0.66–0.75 0.013–0.032 0.008–0.019 0.0015–0.0061 2-1–2-19 0.061–0.151 0.01–0.30 0.66–1.12 0.011–0.031 0.0048–0.018 0.0022–0.0062 表 2 試驗用鋼的機械性能
Table 2. Mechanical properties of experimental steels
Test steels Tensile strength/MPa Yield strength/MPa Elongation/% Transverse impact energy/J Lengthways impact energy/J 0 ℃ ?20 ℃ 0 ℃ ?20 ℃ CCS ≥ 235 400–520 ≥22 ≥18/22.5* ≥13.3/16.7** 1-1–1-5 280–435 405–550 21–34.5 50–81 40–78 22–39 25–39 2-1–2-19 290–385 410–460 25–39 59–199 33–195 33–99 20–80 Note: * represents transverse impact for steels with 5 mm/7 mm thickness; ** represents lengthways impact for steels with 5 mm/7 mm thickness. 表 3 試驗鋼的非金屬夾雜物評級
Table 3. Determination of the content of nonmetallic inclusions in test steels
Test steels A B C D Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1-1 3.5 0 2 0 0 0 0 0 1-2 1 0 0 0 0.5 0 0 0 1-3 0.5 0 1.5 0 0 0 0.5 0.5 1-4 1.5 0 2 0 0 0 0 0 1-5 3–3.5 0 0 0 1.5 0 0.5 0 www.77susu.com -
參考文獻
[1] Matsushima I. Low-alloy Corrosion Resistant Steels—A History of Development Application and Research. Translated by Jin Y K. Beijing: Metallurgical Industry Press, 2004松島巖. 低合金耐蝕鋼——開發、發展及研究. 靳裕康, 譯. 北京: 冶金工業出版社, 2004 [2] Cao C N. Environmental Corrosion of Materials in China. Beijing: Chemical Industry Press, 2005曹楚南. 中國材料的自然環境腐蝕. 北京: 化學工業出版社, 2005 [3] Zhang H T, Zhang J, Wu B Q, et al. Effect of alloying elements on anti-atmospheric corrosion of high strength weathering steel. J Anhui Univ Technol Nat Sci, 2018, 35(3): 209張海濤, 張建, 吳保橋, 等. 合金元素對高強耐候鋼耐大氣腐蝕行為的影響. 安徽工業大學學報, 2018, 35(3):209 [4] Wang J S, Shi P Y, Liu C J, et al. Research and empoldering of high strength weathering steel S450EW. Adv Mater Res, 2014, 937: 125 doi: 10.4028/www.scientific.net/AMR.937.125 [5] Diaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments. Corros Sci, 2018, 141: 146 doi: 10.1016/j.corsci.2018.06.039 [6] Gu B S, Wng B, Ji X C, et al. Exposurecorrosion behavior of economical weathering steel. J Mater Prot, 2004, 37(5): 39 doi: 10.3969/j.issn.1001-1560.2004.05.014顧寶珊, 汪兵, 紀曉春, 等. 經濟型耐大氣腐蝕鋼大氣曝曬腐蝕性能研究. 材料保護, 2004, 37(5):39 doi: 10.3969/j.issn.1001-1560.2004.05.014 [7] Takamura A, Arakawa K, Fujiwara K, et al. Effects of alloying elements on the corrosion resistance of steel in sea-water splash zone. Corros Eng Dig, 1970, 19(7): 294 doi: 10.3323/jcorr1954.19.7_294 [8] Southwell C R, Bultman J D, Alexander A L. Corrosion of metals in typical evironments-final report of 16-year exposures. Mater Perform, 1976, 15(7): 9 [9] Xiao H, Wang S, Huang Z Z, et al. Investigation of the rust on a new kind of low alloy steel (10CrCuSiV) for resistance sea-corrosion. J Univ Sci Technol Beijing, 1997, 19(5): 476肖珩, 汪崧, 黃震中, 等. 新型耐海水腐蝕低合金鋼10CrCuSiV銹層分析研究報告. 北京科技大學學報, 1997, 19(5):476 [10] Melchers R E. Effect of small compositional change on marine immersion corrosion of low alloy steels. Corros Sci, 2004, 46(7): 1669 doi: 10.1016/j.corsci.2003.10.004 [11] Cao G L, Li G M, Chen S, et al. Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels. Acta Metall Sin, 2010, 46(6): 748 doi: 10.3724/SP.J.1037.2010.00748曹國良, 李國明, 陳珊, 等. 典型耐海水腐蝕鋼中Ni和Cr耐點蝕作用的比較. 金屬學報, 2010, 46(6):748 doi: 10.3724/SP.J.1037.2010.00748 [12] Liu D Y, Wei K J, Li W J, et al. Analysis for the reason of corrosion resistance “reversion” of containing chromium low alloy steels in seawater. J China Soc Corros Prot, 2003, 23(1): 7 doi: 10.3969/j.issn.1005-4537.2003.01.002劉大揚, 魏開金, 李文軍, 等. 含鉻低合金鋼在海水中耐蝕性“逆轉”原因分析. 中國腐蝕與防護學報, 2003, 23(1):7 doi: 10.3969/j.issn.1005-4537.2003.01.002 [13] Kawasaki H, Satou H. High corrosion resistant thick plate for Japanese standard crude oil Tan. Nippon Steel Mon, 2011(7): 3川崎博史, 佐藤秀巖. 日本発の國際標準鋼材原油タン用高耐食性厚板. Nippon Steel Mon, 2011(7):3 [14] Hao X H, Dong J H, Mu X, et al. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank. J Mater Sci Technol, 2019, 35(5): 799 doi: 10.1016/j.jmst.2018.11.012 [15] Zou Z J. Study on the corrosion resistance of 09MnNb steel used for building SHANAO 1 ship. Corros Sci Prot Technol, 1990, 2(3): 42鄒中堅. 汕澳一號輪09MnNb鋼耐蝕情況的研究. 腐蝕科學與防護技術, 1990, 2(3):42 [16] Cao G L, Li G M, Chen S, et al. Comparative studies on resistance to pitting corrosion of manganese steels with different deoxidization degrees. J Univ Sci Technol Beijing, 2010, 32(7): 872曹國良, 李國明, 陳珊, 等. 不同脫氧程度錳鋼耐點蝕性能比較. 北京科技大學學報, 2010, 32(7):872 [17] Cao G L, Li G M, Chen S, et al. Effects of deoxidizing degree on the pitting corrosion behavior of carbon and manganese steels. Int J Miner Metall Mater, 2011, 18(2): 169 doi: 10.1007/s12613-011-0418-9 [18] Chen X Q, Chang W S, Yang S C. Sulfides’ critical active potential and pitting corrosion of mild steels//Proceedings of International Conference on Corrosion and Corrosion Control for Offshore and Marine Construction. Xiamen, 1988: 464 [19] Li Y R, Zhu M W, Kong X D, et al. Corrosion test for hull steel of Zhongshan vessel. Mater Prot, 2003, 36(10): 45 doi: 10.3969/j.issn.1001-1560.2003.10.016李玉榮, 朱梅五, 孔小東, 等. 中山艦船體鋼耐蝕性能檢測與分析. 材料保護, 2003, 36(10):45 doi: 10.3969/j.issn.1001-1560.2003.10.016 [20] Tomashov N D. Theory of Corrosion and Protection of Metals. Translated by Hua B D, Yu B N, Cao C N, et al. Beijing: Chinese Industry Press, 1964托馬曉夫. 金屬腐蝕及其保護的理論. 華保定, 余柏年, 曹楚南, 等譯. 北京: 中國工業出版社, 1964 [21] Yang X Z, Yang W. Electrochemical Thermodynamic of Metal Corrosion: Potential–pH Diagram and its Application. Beijing: Chemical Industry Press, 1991楊熙珍, 楊武. 金屬腐蝕電化學熱力學: 電位–pH圖及其應用. 北京: 化學工業出版社, 1991 [22] Chen X Q, Kong X D, Yang S C. Effect of sulfide inclusions on propagation of pitting in carbon steels. J Chin Soc Corros Prot, 2000, 20(2): 65 doi: 10.3969/j.issn.1005-4537.2000.02.001陳學群, 孔小東, 楊思誠. 硫化物夾雜對低碳鋼孔蝕擴展的影響. 中國腐蝕與防護學報, 2000, 20(2):65 doi: 10.3969/j.issn.1005-4537.2000.02.001 [23] Wang J M, Chen X Q, Chang W S, et al. Effect of metallurgical factors on pitting propagation process of low alloy steels. J Harbin InstTechnol, 2006, 38(11): 1943 doi: 10.3321/j.issn:0367-6234.2006.11.032王建民, 陳學群, 常萬順, 等. 冶金因素對低合金鋼點蝕擴展過程的影響. 哈爾濱工業大學學報, 2006, 38(11):1943 doi: 10.3321/j.issn:0367-6234.2006.11.032 [24] Zhang W Q, Shi S T, Xiao J M, et al. Metal Corrosion Manual. Shanghai: Shanghai Scientific and Technical Publishers, 1987張文奇, 石聲泰, 肖紀美, 等. 金屬腐蝕手冊. 上海: 上海科學技術出版社, 1987 [25] Wang Z B, Dong T. Low Alloy High Strength Steels. Beijing: Atomic Energy Press, 1996王祖濱, 東濤. 低合金高強鋼. 北京: 原子能出版社, 1996 -