<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

經濟型耐腐蝕鋼中氧作用的研究

陳學群 張萬靈 陳珊 劉建容 曹國良 李國明

陳學群, 張萬靈, 陳珊, 劉建容, 曹國良, 李國明. 經濟型耐腐蝕鋼中氧作用的研究[J]. 工程科學學報, 2021, 43(7): 960-965. doi: 10.13374/j.issn2095-9389.2020.04.29.001
引用本文: 陳學群, 張萬靈, 陳珊, 劉建容, 曹國良, 李國明. 經濟型耐腐蝕鋼中氧作用的研究[J]. 工程科學學報, 2021, 43(7): 960-965. doi: 10.13374/j.issn2095-9389.2020.04.29.001
CHEN Xue-qun, ZHANG Wan-ling, CHEN San, LIU Jian-rong, CAO Guo-liang, LI Guo-ming. Effect of oxygen on economical corrosion resistant steel[J]. Chinese Journal of Engineering, 2021, 43(7): 960-965. doi: 10.13374/j.issn2095-9389.2020.04.29.001
Citation: CHEN Xue-qun, ZHANG Wan-ling, CHEN San, LIU Jian-rong, CAO Guo-liang, LI Guo-ming. Effect of oxygen on economical corrosion resistant steel[J]. Chinese Journal of Engineering, 2021, 43(7): 960-965. doi: 10.13374/j.issn2095-9389.2020.04.29.001

經濟型耐腐蝕鋼中氧作用的研究

doi: 10.13374/j.issn2095-9389.2020.04.29.001
詳細信息
    通訊作者:

    E-mail:mimi7689@163.com

  • 中圖分類號: TG174.2

Effect of oxygen on economical corrosion resistant steel

More Information
  • 摘要: 為了冶煉不同氧含量的碳素船體鋼,通過機械性能試驗和周浸試驗研究了鋼中氧含量對鋼材腐蝕性能和機械性能的影響。結果表明,在連鑄生產許可的氧范圍內,隨著鋼水脫氧程度的減弱,鋼中氧質量分數增加,鋼材的平均腐蝕率略有下降,而耐點蝕性能有較明顯增強,變化曲線的高氧端比低氧端平均點蝕深度下降約22.7%。弱脫氧鋼的機械性能符合規范要求,可達到D級鋼水平。分析認為,氧提高鋼材耐蝕性的原因主要是固溶氧可提高鐵的熱力學穩定性,提高了蝕孔內鐵的腐蝕電位,降低了蝕坑擴展速度。氧作為耐蝕元素應用可以顯著降低耐蝕鋼的成本,提高經濟性。

     

  • 圖  1  第一輪試驗中鋼的腐蝕與氧含量的關系。(a)平均腐蝕率;(b)平均點蝕深度;(c)最大點蝕深度

    Figure  1.  Relationship between corrosion and mass fraction of oxygen in the first test: (a) average corrosion rate; (b) average pit depth; (c) maximum pit depth

    圖  2  第二輪試驗中鋼的腐蝕與氧質量分數的關系。(a)平均腐蝕率;(b)平均點蝕深度;(c)最大點蝕深度

    Figure  2.  Relationship between corrosion and mass fraction of oxygen in the second test: (a) average corrosion rate; (b) average pit depth; (c) maximum pit depth

    圖  3  樣品30 d腐蝕試驗后的表面觀察和比較。(a)2-6鋼樣;(b)2-17鋼樣

    Figure  3.  Surface observation and comparison of specimens after the 30 d corrosion test: (a) 2-6 steel specimen; (b) 2-17 steel specimen

    表  1  試驗用鋼的化學成分(質量分數)

    Table  1.   Component of experimental steels (mass fraction) %

    Test steelsCSiMnPSO
    CCS(B)≤0.21≤0.50≥0.60≤0.035≤0.035
    1-1–1-50.069–0.2040.18–0.280.66–0.750.013–0.0320.008–0.0190.0015–0.0061
    2-1–2-190.061–0.1510.01–0.300.66–1.120.011–0.0310.0048–0.0180.0022–0.0062
    下載: 導出CSV

    表  2  試驗用鋼的機械性能

    Table  2.   Mechanical properties of experimental steels

    Test steelsTensile strength/MPaYield strength/MPaElongation/%Transverse impact energy/J Lengthways impact energy/J
    0 ℃?20 ℃0 ℃?20 ℃
    CCS≥ 235400–520≥22≥18/22.5*≥13.3/16.7**
    1-1–1-5280–435405–55021–34.550–8140–7822–3925–39
    2-1–2-19290–385410–46025–3959–19933–19533–9920–80
    Note: * represents transverse impact for steels with 5 mm/7 mm thickness; ** represents lengthways impact for steels with 5 mm/7 mm thickness.
    下載: 導出CSV

    表  3  試驗鋼的非金屬夾雜物評級

    Table  3.   Determination of the content of nonmetallic inclusions in test steels

    Test steelsA B C D
    FineCoarse FineCoarse FineCoarse FineCoarse
    1-13.50 20 00 00
    1-210 00 0.50 00
    1-30.50 1.50 00 0.50.5
    1-41.50 20 00 00
    1-53–3.5 000 1.50 0.50
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Matsushima I. Low-alloy Corrosion Resistant Steels—A History of Development Application and Research. Translated by Jin Y K. Beijing: Metallurgical Industry Press, 2004

    松島巖. 低合金耐蝕鋼——開發、發展及研究. 靳裕康, 譯. 北京: 冶金工業出版社, 2004
    [2] Cao C N. Environmental Corrosion of Materials in China. Beijing: Chemical Industry Press, 2005

    曹楚南. 中國材料的自然環境腐蝕. 北京: 化學工業出版社, 2005
    [3] Zhang H T, Zhang J, Wu B Q, et al. Effect of alloying elements on anti-atmospheric corrosion of high strength weathering steel. J Anhui Univ Technol Nat Sci, 2018, 35(3): 209

    張海濤, 張建, 吳保橋, 等. 合金元素對高強耐候鋼耐大氣腐蝕行為的影響. 安徽工業大學學報, 2018, 35(3):209
    [4] Wang J S, Shi P Y, Liu C J, et al. Research and empoldering of high strength weathering steel S450EW. Adv Mater Res, 2014, 937: 125 doi: 10.4028/www.scientific.net/AMR.937.125
    [5] Diaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments. Corros Sci, 2018, 141: 146 doi: 10.1016/j.corsci.2018.06.039
    [6] Gu B S, Wng B, Ji X C, et al. Exposurecorrosion behavior of economical weathering steel. J Mater Prot, 2004, 37(5): 39 doi: 10.3969/j.issn.1001-1560.2004.05.014

    顧寶珊, 汪兵, 紀曉春, 等. 經濟型耐大氣腐蝕鋼大氣曝曬腐蝕性能研究. 材料保護, 2004, 37(5):39 doi: 10.3969/j.issn.1001-1560.2004.05.014
    [7] Takamura A, Arakawa K, Fujiwara K, et al. Effects of alloying elements on the corrosion resistance of steel in sea-water splash zone. Corros Eng Dig, 1970, 19(7): 294 doi: 10.3323/jcorr1954.19.7_294
    [8] Southwell C R, Bultman J D, Alexander A L. Corrosion of metals in typical evironments-final report of 16-year exposures. Mater Perform, 1976, 15(7): 9
    [9] Xiao H, Wang S, Huang Z Z, et al. Investigation of the rust on a new kind of low alloy steel (10CrCuSiV) for resistance sea-corrosion. J Univ Sci Technol Beijing, 1997, 19(5): 476

    肖珩, 汪崧, 黃震中, 等. 新型耐海水腐蝕低合金鋼10CrCuSiV銹層分析研究報告. 北京科技大學學報, 1997, 19(5):476
    [10] Melchers R E. Effect of small compositional change on marine immersion corrosion of low alloy steels. Corros Sci, 2004, 46(7): 1669 doi: 10.1016/j.corsci.2003.10.004
    [11] Cao G L, Li G M, Chen S, et al. Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels. Acta Metall Sin, 2010, 46(6): 748 doi: 10.3724/SP.J.1037.2010.00748

    曹國良, 李國明, 陳珊, 等. 典型耐海水腐蝕鋼中Ni和Cr耐點蝕作用的比較. 金屬學報, 2010, 46(6):748 doi: 10.3724/SP.J.1037.2010.00748
    [12] Liu D Y, Wei K J, Li W J, et al. Analysis for the reason of corrosion resistance “reversion” of containing chromium low alloy steels in seawater. J China Soc Corros Prot, 2003, 23(1): 7 doi: 10.3969/j.issn.1005-4537.2003.01.002

    劉大揚, 魏開金, 李文軍, 等. 含鉻低合金鋼在海水中耐蝕性“逆轉”原因分析. 中國腐蝕與防護學報, 2003, 23(1):7 doi: 10.3969/j.issn.1005-4537.2003.01.002
    [13] Kawasaki H, Satou H. High corrosion resistant thick plate for Japanese standard crude oil Tan. Nippon Steel Mon, 2011(7): 3

    川崎博史, 佐藤秀巖. 日本発の國際標準鋼材原油タン用高耐食性厚板. Nippon Steel Mon, 2011(7):3
    [14] Hao X H, Dong J H, Mu X, et al. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank. J Mater Sci Technol, 2019, 35(5): 799 doi: 10.1016/j.jmst.2018.11.012
    [15] Zou Z J. Study on the corrosion resistance of 09MnNb steel used for building SHANAO 1 ship. Corros Sci Prot Technol, 1990, 2(3): 42

    鄒中堅. 汕澳一號輪09MnNb鋼耐蝕情況的研究. 腐蝕科學與防護技術, 1990, 2(3):42
    [16] Cao G L, Li G M, Chen S, et al. Comparative studies on resistance to pitting corrosion of manganese steels with different deoxidization degrees. J Univ Sci Technol Beijing, 2010, 32(7): 872

    曹國良, 李國明, 陳珊, 等. 不同脫氧程度錳鋼耐點蝕性能比較. 北京科技大學學報, 2010, 32(7):872
    [17] Cao G L, Li G M, Chen S, et al. Effects of deoxidizing degree on the pitting corrosion behavior of carbon and manganese steels. Int J Miner Metall Mater, 2011, 18(2): 169 doi: 10.1007/s12613-011-0418-9
    [18] Chen X Q, Chang W S, Yang S C. Sulfides’ critical active potential and pitting corrosion of mild steels//Proceedings of International Conference on Corrosion and Corrosion Control for Offshore and Marine Construction. Xiamen, 1988: 464
    [19] Li Y R, Zhu M W, Kong X D, et al. Corrosion test for hull steel of Zhongshan vessel. Mater Prot, 2003, 36(10): 45 doi: 10.3969/j.issn.1001-1560.2003.10.016

    李玉榮, 朱梅五, 孔小東, 等. 中山艦船體鋼耐蝕性能檢測與分析. 材料保護, 2003, 36(10):45 doi: 10.3969/j.issn.1001-1560.2003.10.016
    [20] Tomashov N D. Theory of Corrosion and Protection of Metals. Translated by Hua B D, Yu B N, Cao C N, et al. Beijing: Chinese Industry Press, 1964

    托馬曉夫. 金屬腐蝕及其保護的理論. 華保定, 余柏年, 曹楚南, 等譯. 北京: 中國工業出版社, 1964
    [21] Yang X Z, Yang W. Electrochemical Thermodynamic of Metal Corrosion: PotentialpH Diagram and its Application. Beijing: Chemical Industry Press, 1991

    楊熙珍, 楊武. 金屬腐蝕電化學熱力學: 電位–pH圖及其應用. 北京: 化學工業出版社, 1991
    [22] Chen X Q, Kong X D, Yang S C. Effect of sulfide inclusions on propagation of pitting in carbon steels. J Chin Soc Corros Prot, 2000, 20(2): 65 doi: 10.3969/j.issn.1005-4537.2000.02.001

    陳學群, 孔小東, 楊思誠. 硫化物夾雜對低碳鋼孔蝕擴展的影響. 中國腐蝕與防護學報, 2000, 20(2):65 doi: 10.3969/j.issn.1005-4537.2000.02.001
    [23] Wang J M, Chen X Q, Chang W S, et al. Effect of metallurgical factors on pitting propagation process of low alloy steels. J Harbin InstTechnol, 2006, 38(11): 1943 doi: 10.3321/j.issn:0367-6234.2006.11.032

    王建民, 陳學群, 常萬順, 等. 冶金因素對低合金鋼點蝕擴展過程的影響. 哈爾濱工業大學學報, 2006, 38(11):1943 doi: 10.3321/j.issn:0367-6234.2006.11.032
    [24] Zhang W Q, Shi S T, Xiao J M, et al. Metal Corrosion Manual. Shanghai: Shanghai Scientific and Technical Publishers, 1987

    張文奇, 石聲泰, 肖紀美, 等. 金屬腐蝕手冊. 上海: 上海科學技術出版社, 1987
    [25] Wang Z B, Dong T. Low Alloy High Strength Steels. Beijing: Atomic Energy Press, 1996

    王祖濱, 東濤. 低合金高強鋼. 北京: 原子能出版社, 1996
  • 加載中
圖(3) / 表(3)
計量
  • 文章訪問數:  1951
  • HTML全文瀏覽量:  654
  • PDF下載量:  54
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-29
  • 網絡出版日期:  2021-02-01
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回