Semianalytical modeling of a bolted thin plate structure based on nonuniform distributions of the complex modulus of a virtual material
-
摘要: 基于非均勻分布的虛擬材料模擬螺栓連接薄板搭接部分的力學特性,其中虛擬材料的材料參數用復模量表示,可直接生成復剛度矩陣以表示搭接部分的剛度及阻尼特性,省卻了常規建模中生成結合部阻尼矩陣的步驟,在保證模型精確性的基礎上簡化了建模流程,以此建立了螺栓連接薄板結構的半解析模型并對其進行了動力學分析。首先描述了建模理念,將虛擬材料分別假定了三種復模量非均勻分布形式模擬螺栓搭接部分的力學特性,提出用反推辨識技術確定虛擬材料儲能模量與耗能模量的方法。接著,基于能量法并用正交多項式假定模態,推導了螺栓連接薄板的半解析分析模型,并創新性地給出了求解半解析模型任意錘擊點與拾振點處頻響函數的公式。最后,以一個具體的螺栓連接薄板結構為對象進行了實例研究,結果表明:用所創建的半解析模型計算出的各階仿真固有頻率與實驗測得的各階固有頻率的誤差均在5%以內,計算得到的各階仿真模態振型以及頻響函數曲線與實測值均較為接近,從而證明了利用復模量非均勻分布的虛擬材料模擬螺栓搭接部分可有效簡化螺栓結合部建模,亦可達到較高的仿真計算精度。Abstract: The simulation of bolt joints affects the analysis accuracy of the dynamic characteristics of the whole structure in the dynamic modeling of bolted connection structures. In this study, the mechanical properties of the bolted thin-plate lap joint were simulated based on a nonuniformly distributed virtual material. The parameters of the virtual material were expressed based on a complex modulus, and the complex stiffness matrix can be directly generated to express the stiffness and damping characteristics of the lap joint. The steps used to generate a joint damping matrix in conventional modeling were omitted, and the modeling process was simplified to ensure model accuracy. We established a semianalytical model of a bolted thin plate structure to enable its dynamic analysis. In this study, we first described the modeling concept. The virtual material was assumed to have three types of nonuniform complex modulus distributions to simulate the mechanical properties of the bolted lap joint. We proposed a method for determining the storage modulus and energy dissipation modulus of the virtual material using a reverse identification technique. Based on the energy method and the assumed modes of orthogonal polynomials, we derived a semianalytical model of bolted thin plates and develop an innovative formula for solving the frequency response function at any hammering point and the vibration point of the semianalytical model. Finally, we conducted a case study on a bolted thin plate structure. Results show that the deviation between the simulated natural frequencies calculated using the semianalytical model and the experimental natural frequencies are less than 5%. Further, the calculated model shapes and frequency-response-function curves are close to those obtained based on the measured values. These results prove that a virtual material with a nonuniform complex modulus distribution can effectively simplify the modeling of a bolted joint and achieve high simulation accuracy.
-
表 1 螺栓連接薄板結構中板的相關材料及幾何參數
Table 1. Material and geometric parameters of the plate in a bolted thin plate structure
Length/
mmWidth/
mmThickness/
mmElastic modulus/
GPaDensity/
(kg·m?3)Poisson’s
ratio120 120 2.4 200 7930 0.3 表 2 反推法辨識獲得的各分布狀態下的虛擬材料儲能模量
Table 2. Storage modulus of the virtual material for each distribution obtained using the inverse identification technique
Complex modulus distribution of
virtual materialsMaximum storage modulus, ED/Pa Linear distribution 7.6 × 1010 Parabola distribution 1.0835 × 1011 Sinusoidal distribution 1 × 1011 Uniform distribution 2.195 × 1010 表 3 各虛擬材料儲能模量分布模型固有頻率與實驗固有頻率對比
Table 3. Comparison of the natural frequencies obtained using the virtual-material storage modulus distribution model and the experiment
Order Natural frequencies of text/Hz Natural frequencies of parabola distribution/Hz Error/% Natural frequencies of linear distribution/Hz Error/% Natural frequencies of sinusoidal distribution/Hz Error/% Natural frequencies of uniform distribution/Hz Error/% 1 55.537 56.933 2.51364 56.931 2.510038 56.9321 2.512019 56.9319 2.511659 2 197.793 189.6264 ?4.12866 192.3208 ?2.76663 189.9875 ?3.9463 198.1551 0.18307 3 311.441 318.5184 2.272469 332.0858 6.6288 320.419 2.882729 357.1359 14.67209 4 619.969 616.2225 ?0.6043 621.7815 0.292353 616.9306 ?0.49009 635.7655 2.54795 5 881.62 865.2161 ?1.86065 877.6824 ?0.44663 866.8424 ?1.67619 905.9436 2.758966 表 4 各非均勻分布形式中仿真與實驗前5階固有頻率的均方根誤差
Table 4. Root mean square error (RMSE) of the first five natural experimental and simulated frequencies in various nonuniform distributions
Nonuniform distribution RMSE value Linear distribution 3.411172 Parabola distribution 2.543903 Sinusoidal distribution 2.578504 表 5 實驗與仿真前5階振型對照
Table 5. Comparison of the first five experimental and simulated vibration modes
Order Vibration modes by testing Vibration modes by simulation 1 2 3 4 5 www.77susu.com -
參考文獻
[1] Reid J D, Hiser N R. Detailed modeling of bolted joints with slippage. Finite Elem Anal Des, 2005, 41(6): 547 doi: 10.1016/j.finel.2004.10.001 [2] Sawa S, Ishimura M, Sekiguchi Y, et al. 3-D FEM stress analysis and mechanical characteristics in bolted joints under external tensile loadings//ASME 2015 International Mechanical Engineering Congress and Exposition. Houston, 2015: IMECE2015-50572, V02BT02A036 [3] Luyt P C B, Theron N J, Pietra F. Non-linear finite element modelling and analysis of the effect of gasket creep-relaxation on circular bolted flange connections. Int J Press Vessels Pip, 2017, 150: 52 doi: 10.1016/j.ijpvp.2016.12.001 [4] Zhang D C, Wang G, Huang F H, et al. Load-transferring mechanism and calculation theory along engaged threads of high-strength bolts under axial tension. J Constr Steel Res, 2020, 172: 106153 doi: 10.1016/j.jcsr.2020.106153 [5] Luan Y, Guan Z Q, Cheng G D, et al. A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints. J Sound Vib, 2012, 331(2): 325 doi: 10.1016/j.jsv.2011.09.002 [6] Meisami F, Moavenian M, Afsharfard A. Nonlinear behavior of single bolted flange joints: A novel analytical model. Eng Struct, 2018, 173: 908 doi: 10.1016/j.engstruct.2018.07.035 [7] Xiang J W, Zhao S W, Li D C, et al. An improved spring method for calculating the load distribution in multi-bolt composite joints. Composites Part B, 2017, 117: 1 doi: 10.1016/j.compositesb.2017.02.024 [8] Deaner B J, Allen M S, Starr M J, et al. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures. J Vib Acoust, 2015, 137(2): 021012 doi: 10.1115/1.4029074 [9] Li L, Cai A J, Ruan X G, et al. Stiffness modeling and characteristic analysis of bolted joints. J Vib Eng, 2017, 30(1): 1李玲, 蔡安江, 阮曉光, 等. 栓接結合部剛度建模與特性分析. 振動工程學報, 2017, 30(1):1 [10] Sun W, Li X Z, Han Q K. Nonlinear joint parameter identification for bolted beam structure. J Vib Eng, 2013, 26(2): 185 doi: 10.3969/j.issn.1004-4523.2013.02.005孫偉, 李星占, 韓清凱. 螺栓聯接梁結構結合部非線性特性參數辨識. 振動工程學報, 2013, 26(2):185 doi: 10.3969/j.issn.1004-4523.2013.02.005 [11] Iranzad M, Ahmadian H. Identification of nonlinear bolted lap joint models. Comput Struct, 2012, 96-97: 1 doi: 10.1016/j.compstruc.2012.01.011 [12] Wang D, Fan X H. Nonlinear dynamic modeling for joint interfaces by combining equivalent linear mechanics with multi-objective optimization. Acta Mech Solida Sin, 2020, 33(4): 564 doi: 10.1007/s10338-019-00156-w [13] Zha Y J, Zhang J F, Yu D W, et al. Modeling method for bolted joint interfaces based on transversely isotropic virtual materials//2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Auckland, 2018: 1118 [14] Yang Y, Cheng H, Liang B, et al. A novel virtual material layer model for predicting natural frequencies of composite bolted joints. Chin J Aeron, https://doi.org/10.1016/j.cja.2020.05.028 [15] Shi K, Zhang G P. A parameterized model of fixed joint interface based on virtual material. J Mech Sci Technol, 2019, 33(11): 5209 doi: 10.1007/s12206-019-1010-x [16] Ye H, Huang Y M, Li P Y, et al. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces. Tribol Int, 2016, 95: 109 doi: 10.1016/j.triboint.2015.11.013 [17] Zhao Y S, Yang C, Cai L G, et al. Surface contact stress-based nonlinear virtual material method for dynamic analysis of bolted joint of machine tool. Precis Eng, 2016, 43: 230 doi: 10.1016/j.precisioneng.2015.08.002 [18] Shi Y M, Sol H, Hua H X. Material parameter identification of sandwich beams by an inverse method. J Sound Vib, 2006, 290(3-5): 1234 doi: 10.1016/j.jsv.2005.05.026 [19] Gao Y, Sun W, Piao Y H, et al. Inverse identification of support stiffness and damping of hoop based on measured FRF. J Aerospace Power, 2019, 34(3): 664高曄, 孫偉, 樸玉華, 等. 基于實測頻響函數反推管路卡箍支承剛度與阻尼. 航空動力學報, 2019, 34(3):664 [20] Miller B, Ziemiański L. Optimization of dynamic behavior of thin-walled laminated cylindrical shells by genetic algorithms and deep neural networks supported by modal shape identification. Adv Eng Software, 2020, 147: 102830 doi: 10.1016/j.advengsoft.2020.102830 [21] Chisari C, Bedon C, Amadio C. Dynamic and static identification of base-isolated bridges using genetic algorithms. Eng Struct, 2015, 102: 80 doi: 10.1016/j.engstruct.2015.07.043 [22] Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking-continuous casting production scheduling based on the “furnace-caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645劉倩, 楊建平, 王柏琳, 等. 基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型. 工程科學學報, 2020, 42(5):645 [23] Papkov S O, Banerjee J R. Dynamic stiffness formulation and free vibration analysis of specially orthotropic Mindlin plates with arbitrary boundary conditions. J Sound Vib, 2019, 458: 522 doi: 10.1016/j.jsv.2019.06.028 [24] Xue J, Wang Y F, Chen L H. Nonlinear vibration of cracked rectangular Mindlin plate with in-plane preload. J Sound Vib, 2020, 481: 115437 doi: 10.1016/j.jsv.2020.115437 [25] Mahi A, Bedia E A A, Tounsi A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl Math Modell, 2015, 39(9): 2489 doi: 10.1016/j.apm.2014.10.045 [26] Sun W, Wang Z, Yan X F, et al. Inverse identification of the frequency-dependent mechanical parameters of viscoelastic materials based on the measured FRFs. Mech Syst Signal Process, 2018, 98: 816 doi: 10.1016/j.ymssp.2017.05.031 -