<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

H2/H2O氣氛下Fe?C合金薄帶氣固脫碳反應動力學

艾立群 侯耀斌 洪陸闊 周美潔 孫彩嬌 孟凡峻 周玉青

艾立群, 侯耀斌, 洪陸闊, 周美潔, 孫彩嬌, 孟凡峻, 周玉青. H2/H2O氣氛下Fe?C合金薄帶氣固脫碳反應動力學[J]. 工程科學學報, 2021, 43(6): 816-824. doi: 10.13374/j.issn2095-9389.2020.04.17.003
引用本文: 艾立群, 侯耀斌, 洪陸闊, 周美潔, 孫彩嬌, 孟凡峻, 周玉青. H2/H2O氣氛下Fe?C合金薄帶氣固脫碳反應動力學[J]. 工程科學學報, 2021, 43(6): 816-824. doi: 10.13374/j.issn2095-9389.2020.04.17.003
AI Li-qun, HOU Yao-bin, HONG Lu-kuo, ZHOU Mei-jie, SUN Cai-jiao, MENG Fan-jun, ZHOU Yu-qing. Gas–solid reaction kinetics of decarburization of Fe–C alloy strips in H2/H2O[J]. Chinese Journal of Engineering, 2021, 43(6): 816-824. doi: 10.13374/j.issn2095-9389.2020.04.17.003
Citation: AI Li-qun, HOU Yao-bin, HONG Lu-kuo, ZHOU Mei-jie, SUN Cai-jiao, MENG Fan-jun, ZHOU Yu-qing. Gas–solid reaction kinetics of decarburization of Fe–C alloy strips in H2/H2O[J]. Chinese Journal of Engineering, 2021, 43(6): 816-824. doi: 10.13374/j.issn2095-9389.2020.04.17.003

H2/H2O氣氛下Fe?C合金薄帶氣固脫碳反應動力學

doi: 10.13374/j.issn2095-9389.2020.04.17.003
基金項目: 國家自然科學基金資助項目(51374090);河北省自然科學基金資助項目(E2019209160,E2018209284);河北省教育廳科技基礎研究資助項目(JQN2019007);河北省研究生創新資助項目(CXZZBS2020131)
詳細信息
    通訊作者:

    E-mail:honglk@ncst.edu.cn

  • 中圖分類號: TF746

Gas–solid reaction kinetics of decarburization of Fe–C alloy strips in H2/H2O

More Information
  • 摘要: 為對H2/H2O氣氛下Fe?C合金薄帶的氣固反應脫碳進行動力學研究,在保證快速脫碳而鐵不氧化的前提下,利用可控氣氛高溫管式脫碳爐,研究了不同的脫碳溫度、薄帶厚度、脫碳時間對Fe?C合金薄帶脫碳效果的影響。結果表明延長脫碳時間、提高脫碳溫度、減少薄帶厚度均可提高脫碳效果。當脫碳溫度為1353 K,在脫碳過程中,薄帶可以分成明顯的3層,由表面到內部依次是完全脫碳層、部分脫碳層和未脫碳層。完全脫碳層的組織為鐵素體,此部分碳含量最低;部分脫碳層由鐵素體、滲碳體和少量石墨相組成,未脫碳層由珠光體和大量石墨相組成,此部分碳含量最高。脫碳層的厚度隨著脫碳時間的延長而增加,脫碳層的厚度y與時間t平方根滿足良好的線性關系,可用函數y =kt0.5描述,碳原子擴散所需擴散激活能為122.36 kJ?mol?1,脫碳反應為表觀一級反應,表觀活化能為153.79 kJ?mol?1

     

  • 圖  1  高真空電弧熔煉及單輥旋淬系統示意圖

    Figure  1.  Schematic of high-vacuum arc melting and single roller spinning quenching system

    圖  2  銅模噴鑄法制備Fe–C合金薄帶示意圖

    Figure  2.  Schematic of the preparation of Fe–C alloy strips by copper mold spray casting

    圖  3  固態脫碳系統示意圖

    Figure  3.  Schematic of solidstate decarbonization system

    圖  4  H2–H2O氣氛下鐵氧化物還原平衡

    Figure  4.  Equilibrium for iron oxide reduction under H2–H2O reducing gas

    圖  5  薄帶表面X射線衍射分析。(a)1293 K;(b)1353 K;(c)1413 K

    Figure  5.  XRD analysis of strips under different decarburization temperatures: (a) 1293 K; (b)1353 K; (c) 1413 K

    圖  6  平均碳質量分數與脫碳溫度溫度的關系

    Figure  6.  Relationship between average carbon content and temperature

    圖  7  平均碳質量分數與時間的關系

    Figure  7.  Relationship between average carbon content and time

    圖  8  Fe?C合金薄帶脫碳后的微觀組織.(a)10 min;(b)30 min;(c)50 min;(d)60 min;(e)70 min;(f)90 min

    Figure  8.  Microstructure of Fe–C alloy strip decarburized for different time: (a) 10 min; (b) 30 min; (c) 50 min; (d) 60 min; (e) 70 min; (f) 90 min

    圖  9  脫碳層厚度與時間平方根的關系

    Figure  9.  Relationship between the decarburized layer thickness and square root of time

    圖  10  lnk與溫度倒數的關系

    Figure  10.  Relationship between lnk and T?1

    圖  11  平均碳含量與時間的關系

    Figure  11.  Relationship between average carbon content and time

    圖  12  lnw與脫碳時間的關系

    Figure  12.  Relationship between lnw and time

    圖  13  ln k′與T?1的關系

    Figure  13.  Relationship between ln k′ and T?1

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767

    閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
    [2] Li M, Wang X C, Duan J H, et al. Formation and controlling of Type-D inclusions in bearing steel. Chin J Eng, 2018, 40(Suppl 1): 31

    李明, 王新成, 段加恒, 等. 軸承鋼中D類夾雜物的形成與控制. 工程科學學報, 2018, 40(增刊 1):31
    [3] Wang H, Bao Y P, Wang M, et al. Effect of inclusions on DWTT properties of thick gauge X80 hot rolled steel strip. Chin J Eng, 2018, 40(Suppl 1): 1

    王皓, 包燕平, 王敏, 等. 夾雜物對厚規格X80熱軋鋼帶DWTT性能的影響. 工程科學學報, 2018, 40(增刊 1):1
    [4] Rodrigues C M G, Ludwig A, Wu M H, et al. A comprehensive analysis of macrosegregation formation during twin-roll casting. Metall Mater Trans B, 2019, 50(3): 1334 doi: 10.1007/s11663-019-01527-x
    [5] Chen P, Huang H G, Ji C, et al. Bonding strength of Invar/Cu clad strips fabricated by twin-roll casting process. Trans Nonferrous Met Soc China, 2018, 28(12): 2460 doi: 10.1016/S1003-6326(18)64892-7
    [6] Song J M, Lui T S, Chen L H. A study on inhomogeneous distribution of temper graphite particles in strip-cast Fe?C?Si alloys. Metall Mater Trans A, 2002, 33(4): 1263 doi: 10.1007/s11661-002-0227-x
    [7] Hong L K, Ai L Q, Cheng R, et al. Fe?C alloy ribbons gas-solid decarburization process. J Iron Steel Res, 2016, 28(5): 36

    洪陸闊, 艾立群, 程榮, 等. 鐵碳合金薄帶氣固反應脫碳工藝. 鋼鐵研究學報, 2016, 28(5):36
    [8] Hong L K, Ai L Q, Cheng R, et al. Experimental of gas?solid decarburization of Fe?C alloy ribbon. Iron Steel, 2016, 51(3): 27

    洪陸闊, 艾立群, 程榮, 等. 鐵碳合金薄帶氣固反應脫碳試驗. 鋼鐵, 2016, 51(3):27
    [9] Hong L K, Cheng R, Ai L Q, et al. Mechanism of carbon diffusion in the iron Sheet during gas?solid decarburization. Trans Indian Inst Met, 2019, 72(2): 335 doi: 10.1007/s12666-018-1484-8
    [10] Park J O, Long T V, Sasaki Y. Feasibility of solid-state steelmaking from cast iron –decarburization of rapidly solidified cast iron. ISIJ Int, 2012, 52(1): 26 doi: 10.2355/isijinternational.52.26
    [11] McDonald C. Solid state steelmaking: process technical and economic viability. Ironmak Steelmak, 2012, 39(7): 487 doi: 10.1179/0301923312Z.000000000138
    [12] Lee W H, Park J O, Lee J S, et al. Solid state steelmaking by decarburisation of rapidly solidified high carbon iron sheet. Ironmak Steelmak, 2012, 39(7): 530 doi: 10.1179/1743281212Y.0000000032
    [13] Sharif-Sanavi E, Mirjalili M, Vahdati Khaki J, et al. A new approach in solid state steelmaking from thin cast iron sheets through decarburization in CaCO3 pack. ISIJ Int, 2018, 58(10): 1791 doi: 10.2355/isijinternational.ISIJINT-2018-250
    [14] Jing Y A, Yuan Y M, Yan X L, et al. Decarburization mechanism during hydrogen reduction descaling of hot-rolled strip steel. Int J Hydrogen Energy, 2017, 42(15): 10611 doi: 10.1016/j.ijhydene.2017.01.230
    [15] Zhang K, Chen Y L, Sun Y H, et al. Effect of H2O(g) on decarburization of 55SiCr spring steel during the heating process. Acta Metall Sin, 2018, 54(10): 1350 doi: 10.11900/0412.1961.2017.00558

    張凱, 陳銀莉, 孫彥輝, 等. 加熱過程中H2O(g)對55SiCr彈簧鋼脫碳的影響. 金屬學報, 2018, 54(10):1350 doi: 10.11900/0412.1961.2017.00558
    [16] Liu Y B, Zhang W, Tong Q, et al. Effect of Si and Cr on complete decarburization behavior of high carbon steels in atmosphere of 2 vol.% O2. J Iron Steel Res Int, 2016, 23(12): 1316 doi: 10.1016/S1006-706X(16)30194-7
    [17] Guo L N, Chen J, Zhang M, et al. Decarburization thermodynamics of high-carbon ferromanganses powders during gas-solid fluidization process. J Iron Steel Res Int, 2012, 19(5): 1 doi: 10.1016/S1006-706X(12)60092-2
    [18] Guo L N, Chen J, Shi W L, et al. Solid-phase decarburization of high-carbon ferromanganses powders by microwave heating. J Iron Steel Res Int, 2013, 20(8): 34 doi: 10.1016/S1006-706X(13)60138-7
    [19] Hao J J, Chen J, Han P D, et al. Solid phase decarburization kinetics of high-carbon ferrochrome powders in the microwave field. Steel Res Int, 2014, 85(3): 461 doi: 10.1002/srin.201300102
    [20] Chen J, Hao J J, Wang C L, et al. Solid-phase decarburization of high-carbon ferrochrome powders containing calcium carbonate by microwave heating. J Univ Sci Technol Beijing, 2014, 36(12): 1626

    陳津, 郝赳赳, 王晨亮, 等. 微波加熱內配碳酸鈣高碳鉻鐵粉固相脫碳. 北京科技大學學報, 2014, 36(12):1626
    [21] Chen R Y. Reduction of wustite scale by dissolved carbon in steel at 650–900 ℃. Oxid Met, 2018, 89(1-2): 1 doi: 10.1007/s11085-017-9810-9
    [22] Chen Y R, Zhang F, Liu Y. Decarburization of 60Si2MnA in 20 Pct H2O?N2 at 700 ℃ to 900 ℃. Metall Mater Trans A, 2020, 51(4): 1808 doi: 10.1007/s11661-020-05644-0
    [23] Chen Y R, Liu Y, Xu X X. Oxidation of 60Si2MnA steel in atmospheres containing different levels of oxygen, water vapour and carbon dioxide at 700–1000 ℃. Oxid Met, 2020, 93(1-2): 53 doi: 10.1007/s11085-019-09944-8
    [24] Zhao F, Zhang C L, Liu Y Z. Ferrite decarburization of high silicon spring steel in three temperature ranges. Arch Metall Mater, 2016, 61(3): 1715 doi: 10.1515/amm-2016-0252
    [25] Duan X N, Yu H, Lu J, et al. Temperature dependence and formation mechanism of surface decarburization behavior in 35CrMo steel. Steel Res Int, 2019, 90(9): 1900188 doi: 10.1002/srin.201900188
    [26] Luo H W, Xiang R, Chen L F, et al. Modeling the decarburization kinetics of grain-oriented silicon steel. Chin Sci Bull, 2014, 59(15): 1778 doi: 10.1007/s11434-014-0156-2
    [27] Zeng G M, Luo H W, Li J, et al. Experimental studies and numerical simulation on the nitriding process of grain-oriented silicon steel. Acta Metall Sin, 2017, 53(6): 743 doi: 10.11900/0412.1961.2016.00463

    曾貴民, 羅海文, 李軍, 等. 取向硅鋼低溫加熱工藝中滲氮工序的實驗與數值模擬研究. 金屬學報, 2017, 53(6):743 doi: 10.11900/0412.1961.2016.00463
    [28] Zhao X M, Zhang K, Yang Y. Investigation of surface decarburization behavior in 42CrMo steel. J Iron Steel Res, 2019, 31(2): 196

    趙憲明, 張坤, 楊洋. 42CrMo鋼表面脫碳行為研究. 鋼鐵研究學報, 2019, 31(2):196
    [29] Chen Y L, Zuo M F, Luo Z L, et al. Theoretical and experimental study on surface decarburization of 60Si2Mn spring steel. Trans Mater Heat Treat, 2015, 36(1): 192

    陳銀莉, 左茂方, 羅兆良, 等. 60Si2Mn彈簧鋼表面脫碳理論及試驗研究. 材料熱處理學報, 2015, 36(1):192
  • 加載中
圖(13)
計量
  • 文章訪問數:  1472
  • HTML全文瀏覽量:  806
  • PDF下載量:  35
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-17
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回