-
摘要: 利用離散單元法(Discrete element method,DEM)對球形顆粒群以及非球形顆粒群的篩分過程進行了仿真并開展了實驗研究,結果表明球形和非球形顆粒的仿真與實驗中篩分效率的變化是一致的,但非球形顆粒的仿真結果與實驗結果更接近。正交設計多組模擬試驗,分析了各振動參數(振動頻率、振幅以及篩面傾角)對顆粒分布曲線、篩分效率以及物料平均運輸速度的影響規律。對正交試驗表中的數據進行多元非線性擬合,得到篩分效率與振動參數間的關系式;并在此關系式的基礎上,對振動參數進行優化設計,得到了最優振動參數且在仿真中得到了驗證。研究內容不但為高頻振網篩振動參數的設計提供了理論依據,而且為研究高頻振動系統的篩分機理提供了實驗和仿真數據支持。Abstract: The screening efficiency and average transport speed of materials are important indicators for measuring the performance of screening machinery. In recent years, few breakthroughs have been made in traditional screening machinery. As high-efficiency vibration machinery, high-frequency vibrating screens have become widely used in recent years, but the operational methods of high-frequency vibrating mesh screens are relatively unique: the screen box is fixed and the screen is vibrated at a high frequency. Despite its wide use, there are relatively few studies about the materials movement law and screening characteristics of high-frequency vibrating screen. In this study, a discrete element method (DEM) was used in a simulation of the screening process of the spherical and nonspherical particle groups, and an experimental study was also conducted. The results show that changes in the screening efficiency in the simulation of spherical and nonspherical particles are consistent with those observed experimentally, but the simulation results for the nonspherical particles were closer to those obtained in the experiments. Orthogonal designs and multiple sets of simulation tests were conducted to analyze the influence of each vibration parameter (vibration frequency, amplitude and mesh inclination) on the particle distribution curve, screening efficiency, and average transport speed of the materials. Multivariate nonlinear fitting was performed on the data using the orthogonal test table, and the relationship between the screening efficiency and the vibration parameters was obtained. Based on this relationship, the optimal vibration parameters were obtained and verified in the simulation. The results obtained in this research provide a theoretical basis for the design of the vibration parameters of the high-frequency vibrating screen, and the experimental and simulation data provide support for the investigation of the screening mechanism of the high-frequency vibration system.
-
表 1 仿真條件與物料參數
Table 1. Simulation conditions and material parameters
Parameter name Parameter value Mesh size (length × width)/mm 450 × 225 Particle shape Spherical/Nonspherical Density/(kg?m?3) Particle: 2800; Steel: 7800 Poisson’s ratio Particle: 0.25; Steel: 0.3 Shear modulus/Pa Particle: 5 × 107; Steel: 8 × 1010 Coefficient of Restitution Particle – Particle: 0.2; Particle – Steel: 0.3 Coefficient of Static Friction Particle – Particle: 0.6; Particle – Steel: 0.4 Coefficient of Rolling Friction Particle – Particle: 0.01; Particle – Steel: 0.01 表 2 不同粒徑尺寸的顆粒性質
Table 2. Characteristics of particles of different sizes
Particle size/mm Property Generation speed/(kg?s?1) Particle distribution/% 1.5 Easy-to-sieve 0.015 10 2.0 Easy-to-sieve 0.015 10 2.5 Easy-to-sieve 0.015 10 3.5 Difficult-to-sieve 0.025 10 4.5 Difficult -to-sieve 0.025 10 5.0 Obstructed-to-sieve 0.01 10 6.0 Obstructed-to-sieve 0.01 10 7.0 Obstructed-to-sieve 0.01 10 8.0 Obstructed-to-sieve 0.015 10 9.0 Obstructed-to-sieve 0.015 10 表 3 水平與因素對應表
Table 3. Correspondence of levels and factors
Level Vibration frequency/Hz Amplitude/mm Mesh inclination/(°) 1 30 0.5 20 2 35 1.0 25 3 40 1.5 30 4 50 2.0 35 5 70 2.5 40 表 4 正交試驗結果
Table 4. Results of orthogonal tests
Group Vibration
frequency/HzAmplitude/
mmMesh inclination/
(°)Screening
efficiency/%Average transport
speed/(m?s?1)Group Vibration
frequency/HzAmplitude/
mmMesh inclination/
(°)Screening
efficiency/%Average transport
speed/(m?s?1)1 30 0.5 20 78.13 0.412 14 40 2.0 20 77.55 0.621 2 30 1.0 25 74.56 0.483 15 40 2.5 25 74.95 0.801 3 30 1.5 30 72.94 0.623 16 50 0.5 35 76.23 0.822 4 30 2.0 35 70.31 0.809 17 50 1.0 40 72.81 0.927 5 30 2.5 40 67.19 0.843 18 50 1.5 20 80.65 0.643 6 35 0.5 25 78.85 0.472 19 50 2.0 25 77.89 0.725 7 35 1.0 30 76.20 0.637 20 50 2.5 30 72.33 0.869 8 35 1.5 35 74.37 0.819 21 70 0.5 40 62.79 0.915 9 35 2.0 40 68.50 0.872 22 70 1.0 20 70.62 0.639 10 35 2.5 20 75.21 0.603 23 70 1.5 25 67.78 0.755 11 40 0.5 30 80.32 0.631 24 70 2.0 30 63.93 0.859 12 40 1.0 35 76.29 0.759 25 70 2.5 35 57.99 1.082 13 40 1.5 40 70.20 0.872 表 5 回歸系數評價表
Table 5. Regression coefficient evaluations
Correlation coefficient, r2 F value Probability corresponding to F value, P Variance of residuals 0.9841 102.8610 7.7×10?11 0.8132 表 6 參數優化結果
Table 6. Parameter optimization results
Vibration frequency/Hz Amplitude/mm Mesh inclination/(°) Theoretical screening efficiency/% Screening efficiency in simulation/% Average transport speed in simulation/(m?s?1) 51 0.6 27 81.01 81.49 0.732 www.77susu.com -
參考文獻
[1] Zhao H S, Wang Z N. Current status and development trend of high frequency vibrating screen at home and abroad. Metal Mine, 2009, 44(11): 105 doi: 10.3321/j.issn:1001-1250.2009.11.030趙環帥, 王振年. 國內外高頻振動篩的現狀與發展趨勢. 金屬礦山, 2009, 44(11):105 doi: 10.3321/j.issn:1001-1250.2009.11.030 [2] Wang X W. Simulation of single-shaft vibrating screen and movement of particle on the screen surface. J China Coal Soc, 2013, 38(11): 2067王新文. 單軸振動篩運動模擬及篩面上顆粒的運動. 煤炭學報, 2013, 38(11):2067 [3] Fraige F Y, Langston P A, Chen G Z. Distinct element modelling of cubic particle packing and flow. Powder Technol, 2008, 186(3): 224 doi: 10.1016/j.powtec.2007.12.009 [4] Guo Y X, Li H Y, Huang J H, et al. Effects of the key-factors on vibratory screening in asphalt mixing plants. Constr Mach Equip, 2017, 48(10): 13 doi: 10.3969/j.issn.1000-1212.2017.10.003郭英訓, 李懷勇, 黃建華, 等. 瀝青拌和站振動篩分關鍵因子影響規律研究. 工程機械, 2017, 48(10):13 doi: 10.3969/j.issn.1000-1212.2017.10.003 [5] Zhao L L, Liu C S, Yan J X, et al. Numerical simulation of particle screening process based on 3D discrete element method. J China Coal Soc, 2010, 35(2): 307趙啦啦, 劉初升, 閆俊霞, 等. 顆粒篩分過程的三維離散元法模擬. 煤炭學報, 2010, 35(2):307 [6] Li J, Webb C, Pandiella S S, et al. Discrete particle motion on sieves – a numerical study using the DEM simulation. Powder Technol, 2003, 133(1-3): 190 doi: 10.1016/S0032-5910(03)00092-5 [7] Zhao L L, Zhao Y M, Liu C S, et al. Simulation of the screening process on a circularly vibrating screen using 3D-DEM. Min Sci Technol, 2011, 21(5): 677 [8] Cleary P W. The effect of particle shape on simple shear flows. Powder Technol, 2008, 179(3): 144 doi: 10.1016/j.powtec.2007.06.018 [9] Liu Y L, Su J H, Zhao X Q, et al. The study of vibrating screen efficiency based on discrete element method. J Northeast Norm Univ, 2018, 50(4): 78劉義倫, 蘇家輝, 趙先瓊, 等. 基于離散元法的振動篩的篩分效率研究. 東北師大學報, 2018, 50(4):78 [10] Wang Z Y, Ren N, Wu W B, et al. Research on screening results of reciprocating vibration screen based on discrete element method. Agric Mech Res, 2016(1): 33 doi: 10.3969/j.issn.1003-188X.2016.01.007王中營, 任寧, 武文斌, 等. 基于離散元法的往復振動篩篩分效果研究. 農機化研究, 2016(1):33 doi: 10.3969/j.issn.1003-188X.2016.01.007 [11] Wang H, Li J, Jiang H S, et al. Virtual screening of a banana screen based on the 3D discrete element method. J Univ Sci Technol Beijing, 2014, 36(12): 1583王宏, 李珺, 江海深, 等. 基于三維離散元法的等厚篩虛擬篩分. 北京科技大學學報, 2014, 36(12):1583 [12] Harzanagh A A, Orhan E C, Ergun S L. Discrete element modelling of vibrating screens. Miner Eng, 2018, 121: 107 doi: 10.1016/j.mineng.2018.03.010 [13] Elskamp F, Emden H K, Henning M, et al. Benchmarking of process models for continuous screening based on discrete element simulations. Miner Eng, 2015, 83: 78 doi: 10.1016/j.mineng.2015.08.011 [14] Silva B Be, Cunha E R da, Carvalho R M de, et al. Modeling and simulation of green iron ore pellet classification in a single deck roller screen using the discrete element method. Powder Technol, 2018, 332: 359 doi: 10.1016/j.powtec.2018.04.005 [15] Wang G F, Tong X. Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation. Min Sci Technol (China) , 2011, 21(3): 451 doi: 10.1016/j.mstc.2011.05.026 [16] Wang N, Zhao J K, Li M H. Study on influence factors of sieving efficiency of vibrating screen. Food Process, 2018, 43(2): 59王娜, 趙俊凱, 李孟紅. 振動篩篩分效率的影響因素研究. 糧食加工, 2018, 43(2):59 [17] Liu C S, Wang H, Zhao Y M, et al. DEM simulation of particle flow on a single deck banana screen. Int J Min Sci Technol, 2013, 23(2): 273 doi: 10.1016/j.ijmst.2013.04.007 [18] Cleary P W, Sinnott M D, Morrison R D. Separation performance of double deck banana screens - Part 1: Flow and separation for different accelerations. Miner Eng, 2009, 22(14): 1218 doi: 10.1016/j.mineng.2009.07.002 [19] Zhang X, Wu B, Niu L K, et al. Dynamic characteristics of two-way coupling between flip-flow screen and particles based on DEM. J China Coal Soc, 2019, 44(6): l930張新, 武兵, 牛藺楷, 等. 基于DEM弛張篩面與顆粒群雙向耦合的動態特性. 煤炭學報, 2019, 44(6):l930 [20] Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci, 2008, 63(23): 5728 doi: 10.1016/j.ces.2008.08.006 [21] Zhu H P, Zhou Y, Yang R Y, et al. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci, 2007, 62(13): 3378 doi: 10.1016/j.ces.2006.12.089 [22] Zhong W Q, Yu A B, Liu X J, et al. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol, 2016, 302: 108 doi: 10.1016/j.powtec.2016.07.010 [23] Majid M, Walzel P. Convection and segregation in vertically vibrated granular beds. Powder Technol, 2009, 192(3): 311 doi: 10.1016/j.powtec.2009.01.012 [24] Qiao J P, Duan C L, Jiang H S, et al. Study on 6 mm screening of thickness screen with variable amplitude. Coal Technol, 2017, 36(3): 251喬金鵬, 段晨龍, 江海深, 等. 變振幅等厚篩6 mm篩分試驗研究. 煤炭技術, 2017, 36(3):251 [25] Wang C Q, Ran L H. Some major parameters effecting on performance of linear screen. Coal Pre Technol, 2006(2): 13王翠青, 冉隆河. 影響直線振動篩篩分效果的幾個重要參數. 選煤技術, 2006(2):13 -