<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于DEM的高頻振網篩多參數優化

陳兵 燕紀威 尹忠俊 孫志輝 肖有鵬

陳兵, 燕紀威, 尹忠俊, 孫志輝, 肖有鵬. 基于DEM的高頻振網篩多參數優化[J]. 工程科學學報, 2021, 43(6): 852-861. doi: 10.13374/j.issn2095-9389.2020.04.16.005
引用本文: 陳兵, 燕紀威, 尹忠俊, 孫志輝, 肖有鵬. 基于DEM的高頻振網篩多參數優化[J]. 工程科學學報, 2021, 43(6): 852-861. doi: 10.13374/j.issn2095-9389.2020.04.16.005
CHEN Bing, YAN Ji-wei, YIN Zhong-jun, SUN Zhi-hui, XIAO You-peng. Multi-parameter optimization of high-frequency vibrating screen based on DEM[J]. Chinese Journal of Engineering, 2021, 43(6): 852-861. doi: 10.13374/j.issn2095-9389.2020.04.16.005
Citation: CHEN Bing, YAN Ji-wei, YIN Zhong-jun, SUN Zhi-hui, XIAO You-peng. Multi-parameter optimization of high-frequency vibrating screen based on DEM[J]. Chinese Journal of Engineering, 2021, 43(6): 852-861. doi: 10.13374/j.issn2095-9389.2020.04.16.005

基于DEM的高頻振網篩多參數優化

doi: 10.13374/j.issn2095-9389.2020.04.16.005
基金項目: 中央高校基本科研業務費資助項目(FRF-GF-19-009B)
詳細信息
    通訊作者:

    E-mail:bingchen9803@ustb.edu.cn

  • 中圖分類號: TH113.1

Multi-parameter optimization of high-frequency vibrating screen based on DEM

More Information
  • 摘要: 利用離散單元法(Discrete element method,DEM)對球形顆粒群以及非球形顆粒群的篩分過程進行了仿真并開展了實驗研究,結果表明球形和非球形顆粒的仿真與實驗中篩分效率的變化是一致的,但非球形顆粒的仿真結果與實驗結果更接近。正交設計多組模擬試驗,分析了各振動參數(振動頻率、振幅以及篩面傾角)對顆粒分布曲線、篩分效率以及物料平均運輸速度的影響規律。對正交試驗表中的數據進行多元非線性擬合,得到篩分效率與振動參數間的關系式;并在此關系式的基礎上,對振動參數進行優化設計,得到了最優振動參數且在仿真中得到了驗證。研究內容不但為高頻振網篩振動參數的設計提供了理論依據,而且為研究高頻振動系統的篩分機理提供了實驗和仿真數據支持。

     

  • 圖  1  軟球干接觸模型顆粒間受力示意圖

    Figure  1.  Diagram of force between particles in soft ball dry contact model

    圖  2  EDEM中的篩分模型

    Figure  2.  Screening model in EDEM

    圖  3  EDEM中篩網的運動參數

    Figure  3.  Motion parameters of the screen mesh in EDEM

    圖  4  不同類型的非球形顆粒。(a)長條形顆粒;(b)三角形顆粒;(c)正方形顆粒

    Figure  4.  Different types of nonspherical particles: (a) strip particle; (b) triangle particle; (c) square particle

    圖  5  高頻振網篩篩分實驗系統照片

    Figure  5.  Photograph of screening experiment system with high-frequency mesh-vibrating screen

    圖  6  實驗物料

    Figure  6.  Sieving experimental materials

    圖  7  實驗和仿真的篩分效率與篩下物料對比

    Figure  7.  Comparison of experimental and simulated materials

    圖  8  不同振動頻率下顆粒分布曲線

    Figure  8.  Particle distribution curves at different vibration frequencies

    圖  9  振動頻率對篩分效率和物料平均運輸速度的影響

    Figure  9.  Influence of vibration frequency on screening efficiency and average transport speed of materials

    圖  10  不同振幅下顆粒分布曲線

    Figure  10.  Particle distribution curves at different amplitudes

    圖  11  振幅對篩分效率以及物料平均運輸速度的影響

    Figure  11.  Influence of amplitude on screening efficiency and average transport speed of materials

    圖  12  不同篩面傾角下的顆粒分布曲線

    Figure  12.  Particle distribution curves at different mesh inclinations

    圖  13  篩面傾角對篩分效率以及物料平均運輸速度的影響

    Figure  13.  Influence of mesh inclination on screening efficiency and average transport speed of materials

    圖  14  各項數據的擬合誤差

    Figure  14.  Fitting error of each group of data

    圖  15  不同振動參數組合下的篩分效率響應面

    Figure  15.  Response surfaces of screening efficiencies for different combinations of vibration parameters

    表  1  仿真條件與物料參數

    Table  1.   Simulation conditions and material parameters

    Parameter nameParameter value
    Mesh size (length × width)/mm450 × 225
    Particle shapeSpherical/Nonspherical
    Density/(kg?m?3)Particle: 2800; Steel: 7800
    Poisson’s ratioParticle: 0.25; Steel: 0.3
    Shear modulus/PaParticle: 5 × 107; Steel: 8 × 1010
    Coefficient of RestitutionParticle – Particle: 0.2; Particle – Steel: 0.3
    Coefficient of Static FrictionParticle – Particle: 0.6; Particle – Steel: 0.4
    Coefficient of Rolling FrictionParticle – Particle: 0.01; Particle – Steel: 0.01
    下載: 導出CSV

    表  2  不同粒徑尺寸的顆粒性質

    Table  2.   Characteristics of particles of different sizes

    Particle size/mmPropertyGeneration speed/(kg?s?1)Particle distribution/%
    1.5Easy-to-sieve0.01510
    2.0Easy-to-sieve0.01510
    2.5Easy-to-sieve0.01510
    3.5Difficult-to-sieve0.02510
    4.5Difficult -to-sieve0.02510
    5.0Obstructed-to-sieve0.0110
    6.0Obstructed-to-sieve0.0110
    7.0Obstructed-to-sieve0.0110
    8.0Obstructed-to-sieve0.01510
    9.0Obstructed-to-sieve0.01510
    下載: 導出CSV

    表  3  水平與因素對應表

    Table  3.   Correspondence of levels and factors

    LevelVibration frequency/HzAmplitude/mmMesh inclination/(°)
    1300.520
    2351.025
    3401.530
    4502.035
    5702.540
    下載: 導出CSV

    表  4  正交試驗結果

    Table  4.   Results of orthogonal tests

    GroupVibration
    frequency/Hz
    Amplitude/
    mm
    Mesh inclination/
    (°)
    Screening
    efficiency/%
    Average transport
    speed/(m?s?1)
    GroupVibration
    frequency/Hz
    Amplitude/
    mm
    Mesh inclination/
    (°)
    Screening
    efficiency/%
    Average transport
    speed/(m?s?1)
    1300.52078.130.41214402.02077.550.621
    2301.02574.560.48315402.52574.950.801
    3301.53072.940.62316500.53576.230.822
    4302.03570.310.80917501.04072.810.927
    5302.54067.190.84318501.52080.650.643
    6350.52578.850.47219502.02577.890.725
    7351.03076.200.63720502.53072.330.869
    8351.53574.370.81921700.54062.790.915
    9352.04068.500.87222701.02070.620.639
    10352.52075.210.60323701.52567.780.755
    11400.53080.320.63124702.03063.930.859
    12401.03576.290.75925702.53557.991.082
    13401.54070.200.872
    下載: 導出CSV

    表  5  回歸系數評價表

    Table  5.   Regression coefficient evaluations

    Correlation coefficient, r2F valueProbability corresponding to F value, PVariance of residuals
    0.9841102.86107.7×10?110.8132
    下載: 導出CSV

    表  6  參數優化結果

    Table  6.   Parameter optimization results

    Vibration frequency/HzAmplitude/mmMesh inclination/(°)Theoretical screening efficiency/%Screening efficiency in simulation/%Average transport speed in simulation/(m?s?1)
    510.62781.0181.490.732
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhao H S, Wang Z N. Current status and development trend of high frequency vibrating screen at home and abroad. Metal Mine, 2009, 44(11): 105 doi: 10.3321/j.issn:1001-1250.2009.11.030

    趙環帥, 王振年. 國內外高頻振動篩的現狀與發展趨勢. 金屬礦山, 2009, 44(11):105 doi: 10.3321/j.issn:1001-1250.2009.11.030
    [2] Wang X W. Simulation of single-shaft vibrating screen and movement of particle on the screen surface. J China Coal Soc, 2013, 38(11): 2067

    王新文. 單軸振動篩運動模擬及篩面上顆粒的運動. 煤炭學報, 2013, 38(11):2067
    [3] Fraige F Y, Langston P A, Chen G Z. Distinct element modelling of cubic particle packing and flow. Powder Technol, 2008, 186(3): 224 doi: 10.1016/j.powtec.2007.12.009
    [4] Guo Y X, Li H Y, Huang J H, et al. Effects of the key-factors on vibratory screening in asphalt mixing plants. Constr Mach Equip, 2017, 48(10): 13 doi: 10.3969/j.issn.1000-1212.2017.10.003

    郭英訓, 李懷勇, 黃建華, 等. 瀝青拌和站振動篩分關鍵因子影響規律研究. 工程機械, 2017, 48(10):13 doi: 10.3969/j.issn.1000-1212.2017.10.003
    [5] Zhao L L, Liu C S, Yan J X, et al. Numerical simulation of particle screening process based on 3D discrete element method. J China Coal Soc, 2010, 35(2): 307

    趙啦啦, 劉初升, 閆俊霞, 等. 顆粒篩分過程的三維離散元法模擬. 煤炭學報, 2010, 35(2):307
    [6] Li J, Webb C, Pandiella S S, et al. Discrete particle motion on sieves – a numerical study using the DEM simulation. Powder Technol, 2003, 133(1-3): 190 doi: 10.1016/S0032-5910(03)00092-5
    [7] Zhao L L, Zhao Y M, Liu C S, et al. Simulation of the screening process on a circularly vibrating screen using 3D-DEM. Min Sci Technol, 2011, 21(5): 677
    [8] Cleary P W. The effect of particle shape on simple shear flows. Powder Technol, 2008, 179(3): 144 doi: 10.1016/j.powtec.2007.06.018
    [9] Liu Y L, Su J H, Zhao X Q, et al. The study of vibrating screen efficiency based on discrete element method. J Northeast Norm Univ, 2018, 50(4): 78

    劉義倫, 蘇家輝, 趙先瓊, 等. 基于離散元法的振動篩的篩分效率研究. 東北師大學報, 2018, 50(4):78
    [10] Wang Z Y, Ren N, Wu W B, et al. Research on screening results of reciprocating vibration screen based on discrete element method. Agric Mech Res, 2016(1): 33 doi: 10.3969/j.issn.1003-188X.2016.01.007

    王中營, 任寧, 武文斌, 等. 基于離散元法的往復振動篩篩分效果研究. 農機化研究, 2016(1):33 doi: 10.3969/j.issn.1003-188X.2016.01.007
    [11] Wang H, Li J, Jiang H S, et al. Virtual screening of a banana screen based on the 3D discrete element method. J Univ Sci Technol Beijing, 2014, 36(12): 1583

    王宏, 李珺, 江海深, 等. 基于三維離散元法的等厚篩虛擬篩分. 北京科技大學學報, 2014, 36(12):1583
    [12] Harzanagh A A, Orhan E C, Ergun S L. Discrete element modelling of vibrating screens. Miner Eng, 2018, 121: 107 doi: 10.1016/j.mineng.2018.03.010
    [13] Elskamp F, Emden H K, Henning M, et al. Benchmarking of process models for continuous screening based on discrete element simulations. Miner Eng, 2015, 83: 78 doi: 10.1016/j.mineng.2015.08.011
    [14] Silva B Be, Cunha E R da, Carvalho R M de, et al. Modeling and simulation of green iron ore pellet classification in a single deck roller screen using the discrete element method. Powder Technol, 2018, 332: 359 doi: 10.1016/j.powtec.2018.04.005
    [15] Wang G F, Tong X. Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation. Min Sci Technol (China), 2011, 21(3): 451 doi: 10.1016/j.mstc.2011.05.026
    [16] Wang N, Zhao J K, Li M H. Study on influence factors of sieving efficiency of vibrating screen. Food Process, 2018, 43(2): 59

    王娜, 趙俊凱, 李孟紅. 振動篩篩分效率的影響因素研究. 糧食加工, 2018, 43(2):59
    [17] Liu C S, Wang H, Zhao Y M, et al. DEM simulation of particle flow on a single deck banana screen. Int J Min Sci Technol, 2013, 23(2): 273 doi: 10.1016/j.ijmst.2013.04.007
    [18] Cleary P W, Sinnott M D, Morrison R D. Separation performance of double deck banana screens - Part 1: Flow and separation for different accelerations. Miner Eng, 2009, 22(14): 1218 doi: 10.1016/j.mineng.2009.07.002
    [19] Zhang X, Wu B, Niu L K, et al. Dynamic characteristics of two-way coupling between flip-flow screen and particles based on DEM. J China Coal Soc, 2019, 44(6): l930

    張新, 武兵, 牛藺楷, 等. 基于DEM弛張篩面與顆粒群雙向耦合的動態特性. 煤炭學報, 2019, 44(6):l930
    [20] Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci, 2008, 63(23): 5728 doi: 10.1016/j.ces.2008.08.006
    [21] Zhu H P, Zhou Y, Yang R Y, et al. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci, 2007, 62(13): 3378 doi: 10.1016/j.ces.2006.12.089
    [22] Zhong W Q, Yu A B, Liu X J, et al. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol, 2016, 302: 108 doi: 10.1016/j.powtec.2016.07.010
    [23] Majid M, Walzel P. Convection and segregation in vertically vibrated granular beds. Powder Technol, 2009, 192(3): 311 doi: 10.1016/j.powtec.2009.01.012
    [24] Qiao J P, Duan C L, Jiang H S, et al. Study on 6 mm screening of thickness screen with variable amplitude. Coal Technol, 2017, 36(3): 251

    喬金鵬, 段晨龍, 江海深, 等. 變振幅等厚篩6 mm篩分試驗研究. 煤炭技術, 2017, 36(3):251
    [25] Wang C Q, Ran L H. Some major parameters effecting on performance of linear screen. Coal Pre Technol, 2006(2): 13

    王翠青, 冉隆河. 影響直線振動篩篩分效果的幾個重要參數. 選煤技術, 2006(2):13
  • 加載中
圖(15) / 表(6)
計量
  • 文章訪問數:  1492
  • HTML全文瀏覽量:  846
  • PDF下載量:  60
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-16
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回