-
摘要: 在真空感應爐中加入Y2Ti2O7納米粒子制備CLAM鋼,通過掃描電子顯微鏡(SEM)、X射線能譜分析儀(EDS)、X射線衍射儀(XRD)和萬能試驗機,探究Y2Ti2O7納米粒子對CLAM鋼中夾雜物的影響,分析CLAM鋼的力學性能。結果表明,Y2Ti2O7+Fe納米粒子成功加入CLAM鋼,添加粒子后的CLAM鋼中的夾雜物尺寸為0.5~1.5 μm,其形貌近似球形,成分為Y–Ti–O–Mn–C–Ta–W–V–Cr–Fe,屬于包裹狀復合夾雜物,主要是因為Ta、V是強碳化物形成元素以及部分Y2Ti2O7粒子可能發生了團聚。當Y2Ti2O7粒子添加量(質量分數)為0.5%時,外加的Y2Ti2O7粒子使得鋼中夾雜物改性變質為稀土氧化物的復合夾雜類型,鋼的強度為1356 MPa,伸長率和斷面收縮率分別為13.44%和63.15%。在部分拉伸斷口韌窩中還可以觀察到第二相粒子,其尺寸為≤1 μm,呈球狀,其成分較為復雜,主要為Y–Ti–O–C–Ta–W相。
-
關鍵詞:
- Y2Ti2O7納米粒子 /
- 中國低活化馬氏體鋼 /
- 夾雜物變化 /
- 彌散強化 /
- 斷口形貌
Abstract: As the preferred material for the first wall of fusion reactors, China’s low-activation martensitic (CLAM) steel has several advantages; however, its high-temperature (>550 ℃) strength is not enough, and the helium produced by fusion can easily form a thick helium bubble and gather at the boundary, which leads to helium embrittlement; thus, the low-activation ferrite/martensite steel cannot effectively function in the fusion reactor working environment. Previous studies have shown that adding nano-sized oxide strengthening phase into CLAM steel can significantly improve the high-temperature strength and irradiation resistance of the steel, and Y2O3, Al2O3, or ThO2 are commonly used as strengthening phases. Moreover, it has been found that adding Ti will result in a better strengthening effect. In this study, CLAM steel with the addition of Y2Ti2O7 nanoparticles was fabricated using a vacuum induction furnace. Afterward, the effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel was investigated via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and a universal testing machine experiment; then, the mechanical properties of CLAM steel were analyzed. The results show that Y2Ti2O7+Fe nanoparticles are successfully added to CLAM steel. The inclusion size of CLAM steel is 0.5?1.5 μm. The inclusion morphology is near-spherical, and the inclusion composition is Y–Ti–O–Mn–C–Ta–W–V–Cr–Fe; thus, the inclusion is characterized as a compound inclusion, mainly because Ta and V are strong carbide-forming elements and some Y2Ti2O7 particles may agglomerate. When the Y2Ti2O7 content is 0.5%, the inclusions in the steel modify into composite inclusions of rare-earth oxides, and the steel strength is 1356 MPa, while the elongation and section shrinkage are 13.44% and 63.15%, respectively. Moreover, second-phase particles also exist in the fracture dimples. The particles are spherical, less than 1 μm and have a complex composition, mainly Y–Ti–O–C–Ta–W phase. -
表 1 實驗鋼的化學成分(質量分數)
Table 1. Chemical composition of the test steel
% Steel No. C Si Cr Mn W Ta V Y2Ti2O7 1# 0.1 0.05 9 0.45 1.5 0.15 0.2 — 2# 0.1 0.05 9 0.45 1.5 0.15 0.2 0.3 3# 0.1 0.05 9 0.45 1.5 0.15 0.2 0.5 www.77susu.com -
參考文獻
[1] Klueh R L, Ehrlich K, Abe F. Ferritic/martensitic steels: promises and problems. J Nucl Mater, 1992, 191-194: 116 [2] Qiu G X, Zhan D P, Li C S, et al. Effect of Y/Zr ratio on inclusions and mechanical properties of 9Cr-RAFM steel fabricated by vacuum melting. J Mater Eng Perform, 2019, 28(2): 1067 doi: 10.1007/s11665-018-3838-0 [3] Lindau R, M?slang A, Schirra M, et al. Mechanical and microstructural properties of a hipped RAFM ODS-steel. J Nucl Mater, 2002, 307-311: 769 doi: 10.1016/S0022-3115(02)01045-0 [4] Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels. J Nucl Mater, 2012, 422(1-3): 45 doi: 10.1016/j.jnucmat.2011.12.011 [5] Sch?ublin R, Ramar A, Baluc N, et al. Microstructural development under irradiation in European ODS ferritic/martensitic steels. J Nucl Mater, 2006, 351(1-3): 247 doi: 10.1016/j.jnucmat.2006.02.005 [6] Qiu G X, Zhan D P, Li C S, et al. Effects of yttrium on microstructure and properties of reduced activation ferritic-martensitic steel. Mater Sci Technol, 2018, 34(16): 2018 doi: 10.1080/02670836.2018.1509462 [7] Zhan D P, Qiu G X, Jiang Z H, et al. Effect of yttrium and titanium on inclusions and the mechanical properties of 9Cr RAFM steel fabricated by vacuum melting. Steel Res Int, 2017, 88(12): 1700159 doi: 10.1002/srin.201700159 [8] Ratti M, Leuvrey D, Mathon M H, et al. Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J Nucl Mater, 2009, 386-388: 540 doi: 10.1016/j.jnucmat.2008.12.171 [9] Wang L, Guo P M, Zhao P, et al. Thermodynamic and experimental study of C–S system and C–S–Mo system. Vacuum, 2018, 152: 330 doi: 10.1016/j.vacuum.2018.03.053 [10] Gu C, Zhao L H, Gan P. Revolution and control of Fe–Al–Ti–O compound oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe–Al–Ti–O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757 [11] Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763常立忠, 高崗, 鄭福舟, 等. 稀土–鎂復合處理對GCr15軸承鋼中夾雜物的影響. 工程科學學報, 2019, 41(6):763 [12] Su W W, Yang Z Y, Ding Y L. Effect of strong carbide forming elements on low temperature properties of casting high-strength steel. Hot Work Technol, 2014, 43(13): 41蘇文文, 楊卓越, 丁雅莉. 強碳化物形成元素對鑄造高強鋼低溫性能的影響. 熱加工工藝, 2014, 43(13):41 [13] Guo L N, Jia C C, Hu B F, et al. A study on preparation of Y2O3 dispersion strengthened ferritic alloy powder. Powder Metall Technol, 2009, 27(5): 346郭麗娜, 賈成廠, 胡本芙, 等. 制備Y2O3彌散鐵素體合金粉末方法的研究. 粉末冶金技術, 2009, 27(5):346 [14] Guo L N, Hu B F, Liu A Q, et al. Strengthening mechanism of oxide dispersion strengthened steel. J Univ Sci Technol Beijing, 2013, 35(5): 586郭麗娜, 胡本芙, 劉安強, 等. 氧化物彌散強化鋼的強化機理. 北京科技大學學報, 2013, 35(5):586 [15] Yu P F, Hu Q Q, Xia P K, et al. Microstructure and mechanical properties of hot rolled Fe15Mn0.8C–Al–Si light-weight high strength steel. Shanghai Met, 2017, 39(1): 33 doi: 10.3969/j.issn.1001-7208.2017.01.007余鵬飛, 胡錢錢, 夏培康, 等. Fe15Mn0.8C–Al–Si熱軋輕質高強鋼的組織與性能. 上海金屬, 2017, 39(1):33 doi: 10.3969/j.issn.1001-7208.2017.01.007 [16] Cui C S, Gao C R, Su G Q, et al. Strengthening and toughening mechanism of hot-rolled low carbon vanadium steel. J Northeast Univ Nat Sci, 2017, 38(3): 341崔辰碩, 高彩茹, 蘇冠僑, 等. 熱軋低碳釩鋼強韌化機制的研究. 東北大學學報: 自然科學版, 2017, 38(3):341 [17] Zhang Z B, Urbassek H M. Indentation into an Al/Si composite: enhanced dislocation mobility at interface. J Mater Sci, 2018, 53(1): 799 doi: 10.1007/s10853-017-1495-6 [18] Li F, Zhang H Y, He W W, et al. Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel. Acta Metall Sin, 2016, 52(8): 956李飛, 張華煜, 何文武, 等. Mn18Cr18N奧氏體不銹鋼的壓縮拉伸連續加載變形行為. 金屬學報, 2016, 52(8):956 [19] Li H Y. Fracture analysis of the metal tensile specimen. J Shanxi Datong Univ Nat Sci Ed, 2011, 27(1): 76李紅英. 金屬拉伸試樣的斷口分析. 山西大同大學學報: 自然科學版, 2011, 27(1):76 [20] Nan Z, Zhang G S. Research progress on second phase particle reinforced steel and iron materials. Foundry Technol, 2018, 39(7): 1633南竹, 張國賞. 第二相粒子增強鋼鐵材料的研究進展. 鑄造技術, 2018, 39(7):1633 [21] Zhang X, Su R. High temperature tensile properties of 2024 aluminum alloy. Heat Treat Met, 2019, 44(4): 156張欣, 蘇孺. 2024鋁合金的高溫拉伸性能. 金屬熱處理, 2019, 44(4):156 [22] Ma L, He L J, Mo C S, et al. Tensile properties and microscopic deformation mechanism of heat-treated Ni–Cr–Al alloy. Heat Treat Met, 2019, 44(5): 47馬李, 何錄菊, 莫才頌, 等. 熱處理態Ni–Cr–Al合金的拉伸性能及微觀變形機理. 金屬熱處理, 2019, 44(5):47 [23] Zhang J B, Liu F, Xue F. Effect of heat treatment on δ-ferrite and impact toughness of P91 heat-resistant steel. Mater Rev, 2018, 32(4): 1318張建斌, 劉帆, 薛飛. 熱處理工藝對P91耐熱鋼中δ-鐵素體和沖擊性能的影響. 材料導報, 2018, 32(4):1318 [24] Tang L T, Zhu D G, Sun Z, et al. Microstructure and mechanical properties of Al–Ti–Zr intermetallic compounds prepared by vacuum hot pressing. Vacuum, 2018, 150: 166 doi: 10.1016/j.vacuum.2018.01.033 [25] Liu L Y, Gao X Y, Yang X F, et al. Vibration fatigue properties and fracture mechanism of DD6 single crystal superalloy. J Mater Eng, 2018, 46(2): 128 doi: 10.11868/j.issn.1001-4381.2016.000891劉麗玉, 高翔宇, 楊憲鋒, 等. DD6單晶高溫合金振動疲勞性能及斷裂機理. 材料工程, 2018, 46(2):128 doi: 10.11868/j.issn.1001-4381.2016.000891 -