<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

外加Y2Ti2O7納米粒子對CLAM鋼夾雜物的影響

王佳喜 王東偉 邱國興 蔡南 戰東平 姜周華

王佳喜, 王東偉, 邱國興, 蔡南, 戰東平, 姜周華. 外加Y2Ti2O7納米粒子對CLAM鋼夾雜物的影響[J]. 工程科學學報, 2020, 42(S): 21-26. doi: 10.13374/j.issn2095-9389.2020.04.15.s07
引用本文: 王佳喜, 王東偉, 邱國興, 蔡南, 戰東平, 姜周華. 外加Y2Ti2O7納米粒子對CLAM鋼夾雜物的影響[J]. 工程科學學報, 2020, 42(S): 21-26. doi: 10.13374/j.issn2095-9389.2020.04.15.s07
WANG Jia-xi, WANG Dong-wei, QIU Guo-xing, CAI Nan, ZHAN Dong-ping, JIANG Zhou-hua. Effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel[J]. Chinese Journal of Engineering, 2020, 42(S): 21-26. doi: 10.13374/j.issn2095-9389.2020.04.15.s07
Citation: WANG Jia-xi, WANG Dong-wei, QIU Guo-xing, CAI Nan, ZHAN Dong-ping, JIANG Zhou-hua. Effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel[J]. Chinese Journal of Engineering, 2020, 42(S): 21-26. doi: 10.13374/j.issn2095-9389.2020.04.15.s07

外加Y2Ti2O7納米粒子對CLAM鋼夾雜物的影響

doi: 10.13374/j.issn2095-9389.2020.04.15.s07
基金項目: 國家自然科學基金資助項目( 51574081, 51874063)
詳細信息
    通訊作者:

    E-mail: zhandp1906@163.com

  • 中圖分類號: TF748.52

Effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel

More Information
  • 摘要: 在真空感應爐中加入Y2Ti2O7納米粒子制備CLAM鋼,通過掃描電子顯微鏡(SEM)、X射線能譜分析儀(EDS)、X射線衍射儀(XRD)和萬能試驗機,探究Y2Ti2O7納米粒子對CLAM鋼中夾雜物的影響,分析CLAM鋼的力學性能。結果表明,Y2Ti2O7+Fe納米粒子成功加入CLAM鋼,添加粒子后的CLAM鋼中的夾雜物尺寸為0.5~1.5 μm,其形貌近似球形,成分為Y–Ti–O–Mn–C–Ta–W–V–Cr–Fe,屬于包裹狀復合夾雜物,主要是因為Ta、V是強碳化物形成元素以及部分Y2Ti2O7粒子可能發生了團聚。當Y2Ti2O7粒子添加量(質量分數)為0.5%時,外加的Y2Ti2O7粒子使得鋼中夾雜物改性變質為稀土氧化物的復合夾雜類型,鋼的強度為1356 MPa,伸長率和斷面收縮率分別為13.44%和63.15%。在部分拉伸斷口韌窩中還可以觀察到第二相粒子,其尺寸為≤1 μm,呈球狀,其成分較為復雜,主要為Y–Ti–O–C–Ta–W相。

     

  • 圖  1  鋼中典型夾雜物形貌及成分

    Figure  1.  Morphology and compositions of typical inclusions in steel

    圖  2  3#鋼中典型夾雜物面掃

    Figure  2.  Surface scan results of typical inclusions in 3# steel

    圖  3  不同Y2Ti2O7添加量下鋼的力學性能

    Figure  3.  Tensile strength of steel under different Y2Ti2O7 additions

    圖  4  不同Y2Ti2O7添加量下鋼的平均沖擊功與硬度

    Figure  4.  Average impact energy and hardness of steel with different Y2Ti2O7 additions

    圖  5  不同Y2Ti2O7添加量下鋼的室溫拉伸斷口形貌

    Figure  5.  Tensile fracture morphology of steel at room temperature under different Y2Ti2O7 additions

    圖  6  3#鋼拉伸斷口第二相粒子形貌及成分

    Figure  6.  Particle morphology and composition of second-phase particles in the tensile fracture of 3# steel

    圖  7  不同Y2Ti2O7添加量下鋼的室溫沖擊斷口形貌

    Figure  7.  Fracture morphology of steel at room temperature under different Y2Ti2O7 additions

    表  1  實驗鋼的化學成分(質量分數)

    Table  1.   Chemical composition of the test steel %

    Steel No.CSiCrMnWTaVY2Ti2O7
    1#0.10.0590.451.50.150.2
    2#0.10.0590.451.50.150.20.3
    3#0.10.0590.451.50.150.20.5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Klueh R L, Ehrlich K, Abe F. Ferritic/martensitic steels: promises and problems. J Nucl Mater, 1992, 191-194: 116
    [2] Qiu G X, Zhan D P, Li C S, et al. Effect of Y/Zr ratio on inclusions and mechanical properties of 9Cr-RAFM steel fabricated by vacuum melting. J Mater Eng Perform, 2019, 28(2): 1067 doi: 10.1007/s11665-018-3838-0
    [3] Lindau R, M?slang A, Schirra M, et al. Mechanical and microstructural properties of a hipped RAFM ODS-steel. J Nucl Mater, 2002, 307-311: 769 doi: 10.1016/S0022-3115(02)01045-0
    [4] Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels. J Nucl Mater, 2012, 422(1-3): 45 doi: 10.1016/j.jnucmat.2011.12.011
    [5] Sch?ublin R, Ramar A, Baluc N, et al. Microstructural development under irradiation in European ODS ferritic/martensitic steels. J Nucl Mater, 2006, 351(1-3): 247 doi: 10.1016/j.jnucmat.2006.02.005
    [6] Qiu G X, Zhan D P, Li C S, et al. Effects of yttrium on microstructure and properties of reduced activation ferritic-martensitic steel. Mater Sci Technol, 2018, 34(16): 2018 doi: 10.1080/02670836.2018.1509462
    [7] Zhan D P, Qiu G X, Jiang Z H, et al. Effect of yttrium and titanium on inclusions and the mechanical properties of 9Cr RAFM steel fabricated by vacuum melting. Steel Res Int, 2017, 88(12): 1700159 doi: 10.1002/srin.201700159
    [8] Ratti M, Leuvrey D, Mathon M H, et al. Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J Nucl Mater, 2009, 386-388: 540 doi: 10.1016/j.jnucmat.2008.12.171
    [9] Wang L, Guo P M, Zhao P, et al. Thermodynamic and experimental study of C–S system and C–S–Mo system. Vacuum, 2018, 152: 330 doi: 10.1016/j.vacuum.2018.03.053
    [10] Gu C, Zhao L H, Gan P. Revolution and control of Fe–Al–Ti–O compound oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757

    顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe–Al–Ti–O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757
    [11] Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763

    常立忠, 高崗, 鄭福舟, 等. 稀土–鎂復合處理對GCr15軸承鋼中夾雜物的影響. 工程科學學報, 2019, 41(6):763
    [12] Su W W, Yang Z Y, Ding Y L. Effect of strong carbide forming elements on low temperature properties of casting high-strength steel. Hot Work Technol, 2014, 43(13): 41

    蘇文文, 楊卓越, 丁雅莉. 強碳化物形成元素對鑄造高強鋼低溫性能的影響. 熱加工工藝, 2014, 43(13):41
    [13] Guo L N, Jia C C, Hu B F, et al. A study on preparation of Y2O3 dispersion strengthened ferritic alloy powder. Powder Metall Technol, 2009, 27(5): 346

    郭麗娜, 賈成廠, 胡本芙, 等. 制備Y2O3彌散鐵素體合金粉末方法的研究. 粉末冶金技術, 2009, 27(5):346
    [14] Guo L N, Hu B F, Liu A Q, et al. Strengthening mechanism of oxide dispersion strengthened steel. J Univ Sci Technol Beijing, 2013, 35(5): 586

    郭麗娜, 胡本芙, 劉安強, 等. 氧化物彌散強化鋼的強化機理. 北京科技大學學報, 2013, 35(5):586
    [15] Yu P F, Hu Q Q, Xia P K, et al. Microstructure and mechanical properties of hot rolled Fe15Mn0.8C–Al–Si light-weight high strength steel. Shanghai Met, 2017, 39(1): 33 doi: 10.3969/j.issn.1001-7208.2017.01.007

    余鵬飛, 胡錢錢, 夏培康, 等. Fe15Mn0.8C–Al–Si熱軋輕質高強鋼的組織與性能. 上海金屬, 2017, 39(1):33 doi: 10.3969/j.issn.1001-7208.2017.01.007
    [16] Cui C S, Gao C R, Su G Q, et al. Strengthening and toughening mechanism of hot-rolled low carbon vanadium steel. J Northeast Univ Nat Sci, 2017, 38(3): 341

    崔辰碩, 高彩茹, 蘇冠僑, 等. 熱軋低碳釩鋼強韌化機制的研究. 東北大學學報: 自然科學版, 2017, 38(3):341
    [17] Zhang Z B, Urbassek H M. Indentation into an Al/Si composite: enhanced dislocation mobility at interface. J Mater Sci, 2018, 53(1): 799 doi: 10.1007/s10853-017-1495-6
    [18] Li F, Zhang H Y, He W W, et al. Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel. Acta Metall Sin, 2016, 52(8): 956

    李飛, 張華煜, 何文武, 等. Mn18Cr18N奧氏體不銹鋼的壓縮拉伸連續加載變形行為. 金屬學報, 2016, 52(8):956
    [19] Li H Y. Fracture analysis of the metal tensile specimen. J Shanxi Datong Univ Nat Sci Ed, 2011, 27(1): 76

    李紅英. 金屬拉伸試樣的斷口分析. 山西大同大學學報: 自然科學版, 2011, 27(1):76
    [20] Nan Z, Zhang G S. Research progress on second phase particle reinforced steel and iron materials. Foundry Technol, 2018, 39(7): 1633

    南竹, 張國賞. 第二相粒子增強鋼鐵材料的研究進展. 鑄造技術, 2018, 39(7):1633
    [21] Zhang X, Su R. High temperature tensile properties of 2024 aluminum alloy. Heat Treat Met, 2019, 44(4): 156

    張欣, 蘇孺. 2024鋁合金的高溫拉伸性能. 金屬熱處理, 2019, 44(4):156
    [22] Ma L, He L J, Mo C S, et al. Tensile properties and microscopic deformation mechanism of heat-treated Ni–Cr–Al alloy. Heat Treat Met, 2019, 44(5): 47

    馬李, 何錄菊, 莫才頌, 等. 熱處理態Ni–Cr–Al合金的拉伸性能及微觀變形機理. 金屬熱處理, 2019, 44(5):47
    [23] Zhang J B, Liu F, Xue F. Effect of heat treatment on δ-ferrite and impact toughness of P91 heat-resistant steel. Mater Rev, 2018, 32(4): 1318

    張建斌, 劉帆, 薛飛. 熱處理工藝對P91耐熱鋼中δ-鐵素體和沖擊性能的影響. 材料導報, 2018, 32(4):1318
    [24] Tang L T, Zhu D G, Sun Z, et al. Microstructure and mechanical properties of Al–Ti–Zr intermetallic compounds prepared by vacuum hot pressing. Vacuum, 2018, 150: 166 doi: 10.1016/j.vacuum.2018.01.033
    [25] Liu L Y, Gao X Y, Yang X F, et al. Vibration fatigue properties and fracture mechanism of DD6 single crystal superalloy. J Mater Eng, 2018, 46(2): 128 doi: 10.11868/j.issn.1001-4381.2016.000891

    劉麗玉, 高翔宇, 楊憲鋒, 等. DD6單晶高溫合金振動疲勞性能及斷裂機理. 材料工程, 2018, 46(2):128 doi: 10.11868/j.issn.1001-4381.2016.000891
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  1021
  • HTML全文瀏覽量:  799
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-15
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回