<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

CO2分壓對N80油管鋼在CO2驅注井環空環境中應力腐蝕行為的影響

崔懷云 梅鵬程 劉智勇 盧琳

崔懷云, 梅鵬程, 劉智勇, 盧琳. CO2分壓對N80油管鋼在CO2驅注井環空環境中應力腐蝕行為的影響[J]. 工程科學學報, 2020, 42(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2020.04.13.004
引用本文: 崔懷云, 梅鵬程, 劉智勇, 盧琳. CO2分壓對N80油管鋼在CO2驅注井環空環境中應力腐蝕行為的影響[J]. 工程科學學報, 2020, 42(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2020.04.13.004
CUI Huai-yun, MEI Peng-cheng, LIU Zhi-yong, LU Lin. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well[J]. Chinese Journal of Engineering, 2020, 42(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2020.04.13.004
Citation: CUI Huai-yun, MEI Peng-cheng, LIU Zhi-yong, LU Lin. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well[J]. Chinese Journal of Engineering, 2020, 42(9): 1182-1189. doi: 10.13374/j.issn2095-9389.2020.04.13.004

CO2分壓對N80油管鋼在CO2驅注井環空環境中應力腐蝕行為的影響

doi: 10.13374/j.issn2095-9389.2020.04.13.004
基金項目: 國家重點研發計劃資助項目(2018YFB0605502)
詳細信息
    通訊作者:

    E-mail: lulin315@126.com

  • 中圖分類號: TG172

Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well

More Information
  • 摘要: 使用恒應變試樣浸泡試驗、表面分析技術和電化學測試技術研究了CO2分壓對N80鋼在模擬CO2驅注井環空環境中應力腐蝕行為的影響。研究結果表明:CO2分壓對腐蝕速率的影響存在一個拐點,環境溫度為25 ℃時拐點約為1 MPa。當CO2分壓小于1 MPa時,由于腐蝕產物膜(FeCO3)成形較慢,覆蓋率低,隨CO2分壓的增高,N80鋼的自腐蝕電流密度快速增大;當CO2分壓大于1 MPa時,腐蝕產物膜能以較快的速率成形,覆蓋率高,CO2分壓的進一步增高反會使得N80鋼的腐蝕電流密度降低。CO2溶于模擬環空溶液中會使溶液pH持續下降,促使N80油管鋼在環空環境下發生應力腐蝕開裂。N80鋼在CO2注入井環空環境中的應力腐蝕開裂機制是陽極溶解和氫脆共同作用的混合機制。應力腐蝕裂紋在萌生階段局部陽極溶解作用(點蝕)為主導,該作用下CO2分壓為1 MPa時應力腐蝕裂紋最易萌生;在應力腐蝕裂紋生長階段氫脆作用更強,這種作用導致CO2分壓更高時應力腐蝕裂紋更容易生長,應力腐蝕敏感性進一步提高。

     

  • 圖  1  N80油管鋼的金相組織

    Figure  1.  Microstructure of N80 tubing steel

    圖  2  N80鋼在不同CO2分壓下的極化曲線。(a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=0~1.0 MPa;(b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=1.0~4.0 MPa

    Figure  2.  Polarization curves of N80 steel under different partial pressures of CO2: (a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=0–1.0 MPa; (b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=1.0–4.0 MPa

    圖  3  N80鋼在不同CO2分壓下的電化學阻抗譜。(a) Nyquist圖;(b) Bode圖

    Figure  3.  Electrochemical impedance spectroscopy of N80 steel under different partial pressures of CO2: (a) Nyquist; (b) Bode

    圖  4  N80鋼在不同CO2分壓下的電化學阻抗譜等效電路。(a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=0 MPa;(b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$>0 MPa

    Figure  4.  Equivalent circuits of N80 steel under different conditions: (a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=0 MPa; (b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$>0 MPa

    圖  5  不同參數與CO2分壓的關系圖。(a) 1/Rpicorr${P_{{\rm{C}}{{\rm{O}}_2}}}$的關系;(b) Ecorr${P_{{\rm{C}}{{\rm{O}}_2}}}$的關系

    Figure  5.  Relation between ${P_{{\rm{C}}{{\rm{O}}_2}}}$ and different parameters: (a) relation between ${P_{{\rm{C}}{{\rm{O}}_2}}}$ and 1/Rp, icorr; (b) relation between ${P_{{\rm{C}}{{\rm{O}}_2}}}$ and Ecorr

    圖  6  三點彎試樣浸泡720 h后的表面形貌。(a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=1 MPa;(b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=4 MPa

    Figure  6.  Surface profiles of three-point loaded specimens after 720 h of immersion: (a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=1 MPa; (b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=4 MPa

    圖  7  U形彎試樣浸泡720 h后的表面形貌。(a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=1 MPa;(b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=4 MPa

    Figure  7.  Surface profiles of U-bent specimens after 720 h of immersion: (a) ${P_{{\rm{C}}{{\rm{O}}_2}}}$=1 MPa; (b) ${P_{{\rm{C}}{{\rm{O}}_2}}}$ =4 MPa

    表  1  實驗用N80鋼化學成分(質量分數)

    Table  1.   Chemical composition of N80 steel used in the test %

    CSiMnPSCrMo
    0.2770.3181.630.03590.0270.05030.0139
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mohsenzadeh A, Escrochi M, Afraz M V, et al. Non-hydrocarbon gas injection followed by steam–gas co-injection for heavy oil recovery enhancement from fractured carbonate reservoirs. <italic>J Petrol Sci Eng</italic>, 2016, 144: 121 doi: 10.1016/j.petrol.2016.03.003
    [2] Wang S H. Multiphysical Simulation of CO2 Enhanced Oil Recovery in Unconventional Reservoirs: from Fundamental Physics to Simulator Development[Dissertation]. Colorado: Colorado School of Mines, 2019
    [3] Li M J. Study of the Corrosion Inhibition Mechanism and Synergistic Effect of Inhibitor on Carbon Steel in CO2 System[Dissertation]. Beijing: Beijing University of Chemical Technology, 2017

    李明杰. CO2體系中緩蝕劑對碳鋼緩蝕機理和協同效應的研究[學位論文]. 北京: 北京化工大學, 2017
    [4] Zhao Y, Xu Y Y, Zhu Y Y, et al. Research status on internal corrosion protection technology of oil & gas transportation pipeline. <italic>Equip Environ Eng</italic>, 2018, 15(6): 53

    趙毅, 許艷艷, 朱原原, 等. 油氣集輸管道內防腐技術應用進展. 裝備環境工程, 2018, 15(6):53
    [5] Zhang C. Study of the Corrosion Inhibition Mechanism and the Synergistic Corrosion Inhibition Effect of Inhibitors CO2/H2S System[Dissertation]. Beijing: Beijing University of Chemical Technology, 2018

    張晨. CO2/H2S腐蝕體系中緩蝕劑的緩蝕機理及協同效應研究[學位論文]. 北京: 北京化工大學, 2018
    [6] Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H<sub>2</sub>S/CO<sub>2</sub> annular environment. <italic>J Mater Eng Perform</italic>, 2014, 23(4): 1279 doi: 10.1007/s11665-013-0855-x
    [7] Monnot M, Nogueira R P, Roche V, et al. Sulfide stress corrosion study of a super martensitic stainless steel in H<sub>2</sub>S sour environments: Metallic sulfides formation and hydrogen embrittlement. <italic>Appl Surf Sci</italic>, 2017, 394: 132 doi: 10.1016/j.apsusc.2016.10.072
    [8] Liu R K, Wang L X, Liu Z Y, et al. Effect of imidazoline corrosion inhibitor on stress corrosion cracking behavior of P110 steel in simulated annulus environment in CO<sub>2</sub> injection wells. <italic>Surf Technol</italic>, 2015, 44(3): 25

    劉然克, 王立賢, 劉智勇, 等. 咪唑啉類緩蝕劑對P110鋼在CO<sub>2</sub>注入井環空環境中應力腐蝕行為的影響. 表面技術, 2015, 44(3):25
    [9] Liu R K, Yin G J, Wei C Y, et al. Electrochemical corrosion behavior of P110 tubing steel in annular environment. <italic>Corros Sci Prot Technol</italic>, 2013, 25(6): 451

    劉然克, 尹國軍, 韋春艷, 等. 環空環境下P110油管鋼的電化學腐蝕行為. 腐蝕科學與防護技術, 2013, 25(6):451
    [10] Bao M Y, Ren C Q, Lei M Y, et al. Electrochemical behavior of tensile stressed P110 steel in CO<sub>2</sub> environment. <italic>Corros Sci</italic>, 2016, 112: 585 doi: 10.1016/j.corsci.2016.08.021
    [11] Sun C, Li J K, Shuang S, et al. Effect of defect on corrosion behavior of electroless Ni?P coating in CO<sub>2</sub>-saturated NaCl solution. <italic>Corros Sci</italic>, 2018, 134: 23 doi: 10.1016/j.corsci.2018.01.041
    [12] Sun C, Liu S B, Li J K, et al. Insights into the interfacial process in electroless Ni?P coating on supercritical CO<sub>2</sub> transport pipeline as relevant to carbon capture and storage. <italic>ACS Appl Mater Interfaces</italic>, 2019, 11(17): 16243 doi: 10.1021/acsami.9b03623
    [13] Zhu M, Du C W, Li X G, et al. Effect of AC current density on stress corrosion cracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution. <italic>Electrochim Acta</italic>, 2014, 117: 351 doi: 10.1016/j.electacta.2013.11.149
    [14] Lei X W, Feng Y R, Fu A Q, et al. Investigation of stress corrosion cracking behavior of super 13Cr tubing by full-scale tubular goods corrosion test system. <italic>Eng Fail Anal</italic>, 2015, 50: 62 doi: 10.1016/j.engfailanal.2015.02.001
    [15] Liu Z Y, Lu L, Huang Y Z, et al. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water. <italic>Corrosion</italic>, 2014, 70(7): 678 doi: 10.5006/1153
    [16] Liu Z Y, Li X G, Zhang Y R, et al. Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution. <italic>Acta Metall Sin </italic>(<italic>Engl Lett</italic>)<italic></italic>, 2009, 22(1): 58 doi: 10.1016/S1006-7191(08)60071-X
    [17] Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment. <italic>Corros Sci</italic>, 2009, 51(4): 895 doi: 10.1016/j.corsci.2009.01.007
    [18] Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment. <italic>Corros Sci</italic>, 2008, 50(8): 2251 doi: 10.1016/j.corsci.2008.05.011
    [19] Parkins R N, Zhou S. The stress corrosion cracking of C?Mn steel in CO<sub>2</sub>?<inline-formula> <tex-math id="M50-1"> $ {\rm{HCO}}_3^ - - {\rm{CO}}_3^{2 - } $ \normalsize </tex-math></inline-formula> solutions. I: stress corrosion data. <italic>Corros Sci</italic>, 1997, 39(1): 159 doi: 10.1016/S0010-938X(96)00116-3
    [20] Park J J, Pyun S I, Na K H, et al. Effect of passivity of the oxide film on low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution. <italic>Corrosion</italic>, 2002, 58(4): 329 doi: 10.5006/1.3287682
    [21] ASTM. ASTM G170 Standard Guide for Evaluating and Qualifying Oilfield and Refinery Corrosion Inhibitors in the Laboratory. ASTM International, 2012
    [22] Central Iron & Steel Research Institute, Shanghai Research Institute of Materials. GB/T 15970.2—2000 Corrosion of Metals and Alloys-Stress Corrosion Testing Part 2: Preparation and Use of Bent-Beam Specimens. Beijing: Standards Press of China, 2000

    鋼鐵研究總院, 上海材料研究所. GB/T 15970.2—2000 金屬和合金的腐蝕應力腐蝕試驗?第2部分: 彎梁試樣的制備和應用. 北京: 中國標準出版社, 2000
    [23] Askari M, Aliofkhazraei M, Ghaffari S, et al. Film former corrosion inhibitors for oil and gas pipelines?a technical review. <italic>J Nat Gas Sci Eng</italic>, 2018, 58: 92 doi: 10.1016/j.jngse.2018.07.025
    [24] Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO<sub>2</sub> condition. <italic>Corros Sci</italic>, 2017, 120: 107 doi: 10.1016/j.corsci.2017.02.012
    [25] Zhang B. The Corrosion and Hydrogen Damage Behaviour of 10CrSiNiCu Steel in the Simulated Deep Sea Environment[Dissertation]. Harbin: Harbin Engineering University, 2014

    張博. 模擬深海環境10CrSiNiCu鋼腐蝕及氫損傷行為研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2014
    [26] Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid. <italic>Acta Metall Sin</italic>, 2018, 54(10): 1399

    余軍, 張德平, 潘若生, 等. 井下含硫環空液中P110油管鋼應力腐蝕開裂的電化學噪聲特征. 金屬學報, 2018, 54(10):1399
    [27] Li J P, Zhao G X, Wang Y, et al. Static corrosion of oil thimble used in tarim oil field. <italic>J Chin Soc Corros Prot</italic>, 2004, 24(4): 230

    李建平, 趙國仙, 王玉, 等. 塔里木油田用油套管鋼的靜態腐蝕研究. 中國腐蝕與防護學報, 2004, 24(4):230
    [28] Yu J. Investigation on Stress Corrosion Cracking Mechanism and Monitoring Method of P110 Tubing Steel in Simulated Annulus Fluid[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018

    余軍. P110油管鋼在模擬環空液中的應力腐蝕開裂機理與監測方法研究[學位論文]. 武漢: 華中科技大學, 2018
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  1592
  • HTML全文瀏覽量:  906
  • PDF下載量:  33
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-13
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回