<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型

王舉金 張立峰 陳威 王勝東 張月鑫 任英

王舉金, 張立峰, 陳威, 王勝東, 張月鑫, 任英. 卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型[J]. 工程科學學報, 2021, 43(6): 786-796. doi: 10.13374/j.issn2095-9389.2020.04.13.003
引用本文: 王舉金, 張立峰, 陳威, 王勝東, 張月鑫, 任英. 卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型[J]. 工程科學學報, 2021, 43(6): 786-796. doi: 10.13374/j.issn2095-9389.2020.04.13.003
WANG Ju-jin, ZHANG Li-feng, CHEN Wei, WANG Sheng-dong, ZHANG Yue-xin, REN Ying. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold[J]. Chinese Journal of Engineering, 2021, 43(6): 786-796. doi: 10.13374/j.issn2095-9389.2020.04.13.003
Citation: WANG Ju-jin, ZHANG Li-feng, CHEN Wei, WANG Sheng-dong, ZHANG Yue-xin, REN Ying. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold[J]. Chinese Journal of Engineering, 2021, 43(6): 786-796. doi: 10.13374/j.issn2095-9389.2020.04.13.003

卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型

doi: 10.13374/j.issn2095-9389.2020.04.13.003
基金項目: 國家自然科學基金資助項目(U1860206,51725402,51874032)
詳細信息
    通訊作者:

    E-mail:zhanglifeng@ysu.edu.cn

  • 中圖分類號: TF777.1

Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold

More Information
  • 摘要: 國內某廠鍍錫板缺陷處夾雜物主要來自結晶器保護渣的卷入,但其成分與結晶器保護渣有明顯差別。為了進一步研究這種成分差別的原因,建立了耦合熱力學平衡和動力學擴散的結晶器卷渣類夾雜物的成分轉變動力學模型,明確了卷渣類夾雜物的尺寸和密度對其成分轉變的影響規律,并通過對結晶器和液相穴內的鋼液流動和夾雜物運動的數值模擬研究了夾雜物在鋼液中的停留時間。結果表明:結晶器保護渣卷入鋼液后與鋼液不斷發生反應,成分會發生明顯改變。卷渣類夾雜物轉變為缺陷處夾雜物所需要的時間與夾雜物尺寸以及夾雜物密度有關,夾雜物的尺寸和密度越大,轉變為缺陷處夾雜物成分所需的時間越長。卷渣類夾雜物轉變為缺陷處夾雜物所需時間與夾雜物尺寸呈冪函數關系,與夾雜物密度呈二次函數關系。夾雜物在鋼液中的平均停留時間隨夾雜物直徑的增大而減小,并且隨著拉速的增大而減小。小尺寸夾雜物一旦被卷入鋼液中,將有充足的時間轉變為缺陷處的成分。大尺寸夾雜物在鋼液中的平均停留時間小于成分轉變時間,但最大停留時間遠大于成分轉變所需時間,表明部分大尺寸夾雜物依然具有充足的停留時間轉變為缺陷處的成分。

     

  • 圖  1  鍍錫板缺陷處不同位置的化學成分

    Figure  1.  Composition of inclusions at defects on the tinplate

    圖  2  結晶器保護渣成分和缺陷處化學成分的對比

    Figure  2.  Comparison of compositions of mold flux and inclusions at defects

    圖  3  卷渣類夾雜物–鋼液反應示意圖

    Figure  3.  Schematic of the reaction between the inclusions and the steel

    圖  4  計算得到的卷渣類夾雜物成分隨時間的演變

    Figure  4.  Calculated evolution of the composition of mold-flux-entrapped inclusions over time

    圖  5  模型計算的夾雜物成分和與鍍錫板缺陷處成分的對比

    Figure  5.  Comparison of the calculated and experimental compositions of inclusions at defects

    圖  6  不同尺寸卷渣類夾雜物成分的演變。(a)dinc=10 μm;(b)dinc=30 μm;(c)dinc=300 μm;(d)dinc=500 μm;(e)dinc=1 mm;(f)dinc=3 mm

    Figure  6.  Transformation of inclusions of different diameters entrained in the mold flux: (a) dinc=10 μm; (b) dinc=30 μm; (c) dinc=300 μm; (d) dinc=500 μm; (e) dinc=1 mm; (f) dinc=3 mm

    圖  7  夾雜物轉變為缺陷處化學成分所需時間與夾雜物尺寸的關系

    Figure  7.  Relationship between the size of inclusions and the time required for their transformation

    圖  8  不同初始密度卷渣類夾雜物成分演變

    Figure  8.  Evolution of the composition of inclusions with different initial densities entrained with the mold flux

    圖  9  轉變為缺陷處夾雜物成分所需時間與夾雜物初始密度的關系

    Figure  9.  Relationship between the initial density of inclusions and the time required for their transformation

    圖  10  不同拉速對夾雜物軌跡的影響。(a)1.4 m?min?1;(b)1.8 m?min?1

    Figure  10.  Influence of pulling speed on the trajectory of inclusions: (a) 1.4 m?min?1;(b) 1.8 m?min?1

    圖  11  拉速為1.8 m?min?1條件下鋼液中夾雜物尺寸和平均停留時間的關系

    Figure  11.  Relationship between the size of inclusions and the average residence time at a pulling speed of 1.8 m?min?1

    表  1  鍍錫板缺陷處不同位置元素含量(質量分數)

    Table  1.   Chemical composition at different defect locations on the tinplate %

    PositionOFNaMgAlSiCaMnFe
    P129.714.467.581.995.0811.979.630.928.68
    P229.814.936.362.793.9412.7813.591.6424.15
    P337.26.23.651.052.2513.1324.241.4510.83
    P419.217.153.133.160.6911.7218.611.135.23
    P530.084.646.712.194.6213.9615.191.4521.17
    P632.387.276.333.095.5414.6112.091.2917.06
    下載: 導出CSV

    表  2  結晶器保護渣成分

    Table  2.   Composition of the mold flux %

    CompositionCaOSiO2Al2O3Fe2O3MgOK2O+Na2OCaF2
    Mass fraction28.4937.113.340.973.3110.0916.69
    下載: 導出CSV

    表  3  鋼液化學成分

    Table  3.   Chemical composition of the molten steel %

    CompositionCSiMnPST.Al[Al]T.NT.O
    Mass fraction0.030.010.220.0070.0060.0470.0440.00290.0016
    Note:T.Al is total mass fraction of aluminium; T.N is total mass fraction of nitrogen; T.O is total mass fraction of oxygen.
    下載: 導出CSV

    表  4  夾雜物與鋼液反應動力學模型所考慮的化學反應

    Table  4.   Chemical reactions considered in the current model

    ReactionΔ$ G^{\ominus} $ / (J·mol?1)Reference
    $\left[ {{\rm{Ca}}} \right]{\rm{ + }}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{CaO}}} \right)$$\Delta {G^{\ominus} } = - 138240.86 - 63.0T$[21]
    ${\rm{2}}\left[ {{\rm{Al}}} \right]{\rm{ + 3}}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}} \right)$$\Delta { G^{\ominus}} = - 1206220 + 390.39T$[21]
    $\left[ {{\rm{Si}}} \right]{\rm{ + 2}}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{Si}}{{\rm{O}}_{\rm{2}}}} \right)$$\Delta { G^{\ominus}} = - 581900 + 221.8T$[21]
    $\left[ {{\rm{Mg}}} \right]{\rm{ + }}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{MgO}}} \right)$$\Delta { G^{\ominus}} = - 89960 - 82.0T$[21]
    $\left[ {{\rm{Mn}}} \right]{\rm{ + }}\left[ {\rm{O}} \right]{\rm{ = }}\left( {{\rm{MnO}}} \right)$$\Delta { G^{\ominus}} = 288150 - 128.3T$[21]
    下載: 導出CSV

    表  5  不同元素在鋼液中的擴散系數

    Table  5.   Diffusivities of elements in the molten steel 10?9 m2?s?1

    ElementCaAlSiMnMgO
    DM3.53.54.364.43.52.96
    下載: 導出CSV

    表  6  模型初始條件

    Table  6.   Initial conditions used in the calculations

    Initial mass fraction of steel / %CSiMnPS[Al]T.NT.O[Ca][Mg]
    0.030.010.220.0070.0060.0440.00290.00160.00010.0001
    Initial mass fraction of inclusion / %CaOSiO2Al2O3Fe2O3MgONa2OCaF2
    28.4937.113.340.973.3110.0916.69
    ParametersTsteel / ℃ρsteel / (kg?m?3)μsteel / (Pa·s)ρinc / (kg?m?3)dinc / μm
    150070000.00672500100
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang L F. Non-Metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019

    張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019
    [2] Zhang L F. Non-Metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019

    張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2019
    [3] Jiang Y F. Analysis of surface defects of medium plate rolled from continuous casting slab. Iron Steel, 1998, 33(8): 29

    姜亞飛. 連鑄板坯軋制中板的表面缺陷. 鋼鐵, 1998, 33(8):29
    [4] Yu H X, Deng X X, Wang X H, et al. Characteristics of subsurface inclusions in deep-drawing steel slabs at high casting speed. Metall Res Technol, 2015, 112(6): 608 doi: 10.1051/metal/2015043
    [5] Lan Y, Wang Y F, Yang Z Z, et al. Analyzing and control of surface inclusion defect of hot-rolled coil. Adv Mater Res, 2013, 753-755: 230 doi: 10.4028/www.scientific.net/AMR.753-755.230
    [6] Gao X J, Li J S, Yang S F, et al. Application of tracers to investigate source of slag inclusions in surface defects of SPHC steel. Henan Metall, 2014, 22(3): 14 doi: 10.3969/j.issn.1006-3129.2014.03.004

    高曉杰, 李京社, 楊樹峰, 等. SPHC板卷表面缺陷來源示蹤研究. 河南冶金, 2014, 22(3):14 doi: 10.3969/j.issn.1006-3129.2014.03.004
    [7] Jiang C H, Tang D, Zhang C, et al. Morphology and metallurgical factors of line defects on surface of cold rolled 304 austenitic stainless steel sheet. Mater Res Innovations, 2014, 18(Suppl 4): S4-281
    [8] Yotsuji J, Koshihara T. Detection system for inclusion defects in hot-rolled steel plates using MFLT with two different magnetizing strengths. AIP Conf Proc, 2014, 1581: 1315
    [9] Liu S T, Hu J H, Xu Z Q, et al. Analysis on inclusion defects for titanium containing austenitic steel and related manufacturing way // The 8th Pacific Rim International Congress on Advanced Materials and Processing. Waikoloa, 2013: 2205
    [10] Kusano A, Sato N, Okimori M. Formation mechanism of a white spot defect on the tin plate steel produced by continuous cast slab. Tetsu-To-Hagane, 2000, 86(5): 315 doi: 10.2355/tetsutohagane1955.86.5_315
    [11] Zhang L F. Nucleation, growth, transport, and entrapment of inclusions during steel casting. JOM, 2013, 65(9): 1138 doi: 10.1007/s11837-013-0688-y
    [12] Wang S D, Chen W, Zhang X B, et al. Influence of fc-mold on flow pattern and entrapment of inclusions in continuous casting strand. // ICS2018-7th International Congress on Science and Technology of Steelmaking. Venice, 2018
    [13] Wang S D, Zhang L F, Wang Q Q, et al. Effect of electromagnetic parameters on the motion and entrapment of inclusions in FC-Mold continuous casting strands. Metall Res Technol, 2016, 113(2): 205 doi: 10.1051/metal/2016003
    [14] Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
    [15] Yamashita S, Iguchi M. Mechanism of mold powder entrapment caused by large argon bubble in continuous casting mold. ISIJ Int, 2001, 41(12): 1529 doi: 10.2355/isijinternational.41.1529
    [16] Jiang P G, Lai C B. Numerical simulation of the flow field in a wide slab continuous casting mold. Chin J Eng, 2016, 38(Suppl 1): 50

    姜平國, 賴朝斌. 寬板坯連鑄結晶器流場的數值模擬. 工程科學學報, 2016, 38(增刊1): 50
    [17] Wu H J, Zhang L, Xu Y, et al. Water model study on critical slag entrapment behavior based on PIV technology. Chin J Eng, 2016, 38(5): 637

    吳華杰, 張漓, 徐陽, 等. 基于PIV技術的鋼包臨界卷渣行為水模型研究. 工程科學學報, 2016, 38(5):637
    [18] Ohguchi S, Robertson D G C, Deo B, et al. Simultaneous dephosphorization and desulphurization of molten pig iron. Ironmaking Steelmaking, 1984, 11(4): 202
    [19] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. basic concept and application. ISIJ Int, 2013, 53(12): 2110 doi: 10.2355/isijinternational.53.2110
    [20] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 2. condition to control the inclusion composition. ISIJ Int, 2013, 53(12): 2118 doi: 10.2355/isijinternational.53.2118
    [21] Zhang Y, Ren Y, Zhang L F. Kinetic study on compositional variations of inclusions, steel and slag during refining process. Metall Res Technol, 2018, 115(4): 415 doi: 10.1051/metal/2018059
    [22] Zhang Y. Kinetic Study on Composiitoal Variations of Steel, Slag and Incluisons in a Multiphase System ofSteel-Slag -Incluison-Refractory-Alloy-Air”[Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    張瑩. “鋼–渣–夾雜物–耐火材料–合金–空氣”六相多元體系下的鋼、渣和夾雜物成分變化的動力學研究[學位論文]. 北京: 北京科技大學, 2019
    [23] Zhang J. Coexistence theory of slag structure and its application to calculation of oxidizing capability of slag melts. J Iron Steel Res, 2003, 10(1): 1
    [24] Li S, Zheng X M, Ma A Y, et al. Construction and application of activity models for CaO?SiO2?Al2O3?TiO2 slag system. Chin J Rare Met, 2020, 44(5): 540

    李松, 鄭雪梅, 馬愛元, 等. CaO–SiO2–Al2O3–TiO2渣系活度計算模型的建立及應用. 稀有金屬, 2020, 44(5):540
    [25] Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in Type 304 Stainless Steels during heat treatment. Metall Mater Trans B, 2017, 48(5): 2281 doi: 10.1007/s11663-017-1007-8
    [26] Yang W, Guo C B, Zhang L F, et al. Evolution of oxide inclusions in Si?Mn killed steels during hot-rolling process. Metall Mater Trans B, 2017, 48(5): 2717 doi: 10.1007/s11663-017-1025-6
    [27] Cheng G, Li W F, Zhang X G, et al. Transformation of inclusions in solid GCr15 bearing steels during heat treatment. Metals, 2019, 9(6): 642 doi: 10.3390/met9060642
    [28] Chu Y P, Li W F, Ren Y, et al. Transformation of inclusions in linepipe steels during heat treatment. Metall Mater Trans B, 2019, 50(4): 2047 doi: 10.1007/s11663-019-01593-1
    [29] Wang J J, Li W F, Ren Y, et al. Thermodynamic and kinetic analysis for transformation of oxide inclusions in solid 304 stainless steels. Steel Res Int, 2019, 90(7): 1800600 doi: 10.1002/srin.201800600
  • 加載中
圖(11) / 表(6)
計量
  • 文章訪問數:  1523
  • HTML全文瀏覽量:  751
  • PDF下載量:  95
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-13
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回