<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電弧爐內長電弧等離子體的數值模擬

姚聰林 朱紅春 姜周華 潘濤

姚聰林, 朱紅春, 姜周華, 潘濤. 電弧爐內長電弧等離子體的數值模擬[J]. 工程科學學報, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04
引用本文: 姚聰林, 朱紅春, 姜周華, 潘濤. 電弧爐內長電弧等離子體的數值模擬[J]. 工程科學學報, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04
YAO Cong-lin, ZHU Hong-chun, JIANG Zhou-hua, PAN Tao. Numerical simulation of a long arc plasma in an electric arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04
Citation: YAO Cong-lin, ZHU Hong-chun, JIANG Zhou-hua, PAN Tao. Numerical simulation of a long arc plasma in an electric arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60-67. doi: 10.13374/j.issn2095-9389.2020.04.08.s04

電弧爐內長電弧等離子體的數值模擬

doi: 10.13374/j.issn2095-9389.2020.04.08.s04
基金項目: 國家重點研發計劃資助項目(2017YFB0304205)
詳細信息
    通訊作者:

    E-mail:Jiangzh@smm.neu.edu.cn

  • 中圖分類號: TF741.5

Numerical simulation of a long arc plasma in an electric arc furnace

More Information
  • 摘要: 全廢鋼連續加料電弧爐內長電弧作為爐內主要的能量來源,對廢鋼熔化及鋼液升溫至關重要。采用磁矢量勢的磁流體動力學方法建立了電弧爐內電弧的數值模型,并基于該數值模型對電弧爐內電磁場、溫度場和流場進行耦合求解,研究了電流大小、弧長對電弧爐內電弧的溫度、速度、壓力及氣體剪切力特性的影響。結果表明,全廢鋼連續加料電弧爐內電弧等離子體呈“長鐘型”分布,電弧柱較細長;隨著電流增大,電弧有效作用范圍增大,陽極表面電弧壓力和氣體剪切力增大;隨著弧長增加,電弧有效作用范圍減小,陽極表面的電弧壓力和氣體剪切力減小。短弧操作對熔池沖擊劇烈,長弧操作熔池較為平穩,合理控制電流和弧長能有效提高電弧熱效率。

     

  • 圖  1  電弧爐電弧模擬的計算區域

    Figure  1.  Computational domain of the arc model

    圖  2  電弧電流為1150 A的溫度分布圖

    Figure  2.  Temperature distribution with an arc current of 1150 A

    圖  3  電弧電流為1150 A時距離陰極不同位置處鮑曼實驗數據與模擬數據電弧等離子體速度的徑向分布比對圖。(a)20 mm;(b)38 mm;(c)55 mm

    Figure  3.  Comparison diagram of the radial distribution of the arc plasma velocity at different positions of the Bowman experiment data and simulation data at an arc current of 1150 A:(a) 20 mm;(b) 38 mm;(c) 55 mm

    圖  4  不同電流大小對電弧溫度分布的影響。(a)30 kA;(b)40 kA;(c)50 kA

    Figure  4.  Effect of different currents on the arc temperature distribution: (a) 30 kA; (b) 40 kA; (c) 50 kA

    圖  5  40 kA?400 mm工藝條件下電弧速度分布

    Figure  5.  Arc velocity distribution under 40 kA?400 mm process conditions

    圖  6  不同電流大小對電弧中心軸線速度分布的影響

    Figure  6.  Effect of different currents on the velocity distribution of the arc central axis

    圖  7  不同電流大小對電弧作用力的影響。(a)電弧壓力;(b)氣體剪切力

    Figure  7.  Effect of different currents on arc force:(a) arc pressure; (b) shear stress

    圖  8  不同弧長對電弧溫度分布的影響。(a)300 mm;(b)400 mm;(c)500 mm

    Figure  8.  Effect of different arc lengths on the arc temperature distribution: (a) 300 mm; (b) 400 mm; (c) 500 mm

    圖  9  不同弧長對電弧作用力的影響。(a)電弧壓力;(b)氣體剪切力

    Figure  9.  Effect of different arc lengths on arc force: (a) arc pressure; (b) shear stress

    表  1  電弧模擬邊界條件

    Table  1.   Boundary conditions of the arc simulation

    BoundaryT/K$\varphi $/VA/(W·h?m?1)
    AB4130 or 1800$ - \sigma \dfrac{{\partial \varphi }}{{\partial {\textit{z}}}} = J$or 0$\dfrac{{\partial A}}{{\partial n}} = 0$
    C1800$\dfrac{{\partial \varphi }}{{\partial {\textit{z}}}}{\rm{ = }}0$$\dfrac{{\partial A}}{{\partial n}} = 0$
    CD1800$\dfrac{{\partial \varphi }}{{\partial r}}{\rm{ = }}0$0
    DE18000$\dfrac{{\partial A}}{{\partial n}} = 0$
    AE$\dfrac{{\partial T}}{{\partial r}}{\rm{ = }}0$$\dfrac{{\partial \varphi }}{{\partial r}}{\rm{ = }}0$$\dfrac{{\partial A}}{{\partial n}} = 0$
    下載: 導出CSV

    表  2  不同電弧電流下鮑曼實驗數據[28]與模擬數據中等離子體流速對比

    Table  2.   Comparison of the plasma flow rate between Bowman data and simulated data at different currents

    Current/ADistance from the cathode/mm
    203855
    Bowman/(m·s?1)Simulated/(m·s?1)Bowman/(m·s?1)Simulated/(m·s?1)Bowman/(m·s?1)Simulated/(m·s?1)
    520520548230254180160
    1150140014151000942600585
    216015001449950920500733
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Teng L D, Meador M, Ljungqvist P. Application of new generation electromagnetic stirring in electric arc furnace. Steel Res Int, 2017, 88(4): 1600202 doi: 10.1002/srin.201600202
    [2] Hay T, Echterhof T, Visuri V V. Development of an electric arc furnace simulator based on a comprehensive dynamic process model. Processes, 2019, 7(11): 852 doi: 10.3390/pr7110852
    [3] He X W. Current status and development trend of EAF steelmaking process at home and abroad. Eng Technol, 2016(67): 268

    何孝文. 煉鋼短流程工藝國內外現狀及發展趨勢. 工程技術, 2016(67):268
    [4] Zhu R, Wei G S, Dong K. Development of green and intelligent technologies in electric arc furnace steelmaking processes//Proceedings of the 11th China Iron and Steel Annual Conference. Beijing, 2017: 1

    朱榮, 魏光升, 董凱. 電弧爐煉鋼綠色及智能化技術進展//第十一屆中國鋼鐵年會論文集. 北京, 2017: 1
    [5] Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10

    朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10
    [6] Kukharev A, Bilousov V, Bilousov E, et al. The peculiarities of convective heat transfer in melt of a multiple-electrode arc furnace. Metals, 2019, 9(11): 1174 doi: 10.3390/met9111174
    [7] Odenthal H J, Kemminger A, Krause F, et al. Review on modeling and simulation of the electric arc furnace (EAF). Steel Res Int, 2018, 89(1): 1700098 doi: 10.1002/srin.201700098
    [8] Fathi A, Saboohi Y, ?krjanc I, et al. Low computational-complexity model of EAF arc-heat distribution. ISIJ Int, 2015, 55(7): 1353 doi: 10.2355/isijinternational.55.1353
    [9] Guo Z Y, Zhao W H. Arc and Thermal Plasma. Beijing: Science Press, 1986

    過增元, 趙文華. 電弧和熱等離子體. 北京: 科學出版社, 1986
    [10] Song C. Numerical Simulation and Experimental Verification of DC Arc Plasma Sprayed Alumina[Dissertation]. Changsha: Central South University, 2014

    宋琛. 直流電弧等離子體噴涂Al2O3的數值模擬與實驗驗證[學位論文]. 長沙: 中南大學, 2014
    [11] Pan J J, Hu S S, Yang L J, et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten–plasma–anode model. Acta Mater, 2016, 118: 221 doi: 10.1016/j.actamat.2016.07.046
    [12] Pan J J, Hu S S, Yang L J, et al. Simulation and analysis of heat transfer and fluid flow characteristics of variable polarity GTAW process based on a tungsten–arc-specimen coupled model. Int J Heat Mass Transfer, 2016, 96: 346 doi: 10.1016/j.ijheatmasstransfer.2016.01.014
    [13] Zhou Q H. Numerical Simulation of DC Arc Plasma Torch[Dissertation]. Shanghai: Fudan University, 2009

    周前紅. 直流電弧等離子體炬的數值模擬[學位論文]. 上海: 復旦大學, 2009
    [14] Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc. J Appl Phys, 1983, 54(3): 1293 doi: 10.1063/1.332195
    [15] Lowke J J, Kovitya P, Schmidt H P. Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys, 2000, 25(11): 1600
    [16] Fan D, Chen J H, Ushio M. Numerical analysis of the heat and mass transfer process in TIG arc. Chin J Mech Eng, 1998, 34(2): 39 doi: 10.3321/j.issn:0577-6686.1998.02.007

    樊丁, 陳劍虹, 牛尾誠夫. TIG電弧傳熱傳質過程的數值分析. 機械工程學報, 1998, 34(2):39 doi: 10.3321/j.issn:0577-6686.1998.02.007
    [17] Lu F G, Yao S, Qian W F. Numerical analysis on tungsten inert gas welding arc. J Shanghai Jiaotong Univ, 2003, 37(12): 1862 doi: 10.3321/j.issn:1006-2467.2003.12.012

    蘆鳳桂, 姚舜, 錢偉方. 鎢極氬弧焊焊接電弧數值分析. 上海交通大學學報, 2003, 37(12):1862 doi: 10.3321/j.issn:1006-2467.2003.12.012
    [18] Lu F G. 3D Numerical Simulation onDynamic Interaction between TIG Welding Arc and Weld Pool[Dissertation]. Shanghai: Shanghai Jiaotong University, 2004

    蘆鳳桂. TIG焊接電弧與熔池動態交互作用三維數值模擬[學位論文]. 上海: 上海交通大學, 2004
    [19] Li L M, Li B K, Liu L C, et al. Numerical modeling of fluid flow, heat transfer and arc–melt interaction in tungsten inert gas welding. High Temp Mater Processes, 2017, 36(4): 427 doi: 10.1515/htmp-2016-0120
    [20] Wang X X, Huang J K, Huang Y, et al. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling. Appl Therm Eng, 2017, 113: 27 doi: 10.1016/j.applthermaleng.2016.11.008
    [21] Hsu K C, Pfender E. Two-temperature modeling of the free-burning, high-intensity arc. J Appl Phys, 1983, 54(8): 4359 doi: 10.1063/1.332672
    [22] Capitelli M, Colonna G, Gorse C, et al. Transport properties of high temperature air in local thermodynamic equilibrium. Eur Phys J D, 2000, 11(2): 279 doi: 10.1007/s100530070094
    [23] Zhu Y B, Song D L, Zeng Z S, et al. DC Electric Arc Furnace Steelmaking Technology. Beijing: Metallurgical Industry Press, 1997

    朱應波, 宋東亮, 曾昭生, 等. 直流電弧爐煉鋼技術. 北京: 冶金工業出版社, 1997
    [24] Wang F, Jin Z, Zhu Z. Numerical study of dc arc plasma and molten bath in dc electric arc furnace. Ironmaking Steelmaking, 2006, 33(1): 39 doi: 10.1179/174328105X71326
    [25] Morris J C, Bach G R, Krey R U, et al. Continuum radiated power for high-temperature air and its components. AIAA J, 1966, 4(7): 1223 doi: 10.2514/3.3652
    [26] Wang F H, Jin Z J, Zhu Z S. Numerical simulation of plasma in DC electric arc furnace. High Vol Apparatus, 2005, 41(4): 241 doi: 10.3969/j.issn.1001-1609.2005.04.001

    王豐華, 金之儉, 朱子述. 直流電弧爐電弧等離子體射流的數值模擬. 高壓電器, 2005, 41(4):241 doi: 10.3969/j.issn.1001-1609.2005.04.001
    [27] Wang F H. Study of Modeling the Electric Arc Furnace and Its Application[Dissertation]. Shanghai: Shanghai Jiaotong University, 2006

    王豐華. 電弧爐建模研究及其應用[學位論文]. 上海: 上海交通大學, 2006
    [28] Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A. J Phys D Appl Phys, 1972, 5(8): 1422 doi: 10.1088/0022-3727/5/8/309
    [29] Qi J W, Hu M, Shao Z R, et al. Numerical simulation of three-dimensional long arc magneto-hydrodynamic. Ind Heat, 2018, 47(6): 38 doi: 10.3969/j.issn.1002-1639.2018.06.011

    齊景偉, 胡明, 邵哲如, 等. 三維長電弧磁流體動力學數值模擬. 工業加熱, 2018, 47(6):38 doi: 10.3969/j.issn.1002-1639.2018.06.011
    [30] Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool. Weld J, 1990, 69(9): 346
    [31] Tong Y B, Liu Z, Luo Y Z, et al. High impedance EAF of long arc operation. Metall Equip, 2014(6): 20 doi: 10.3969/j.issn.1001-1269.2014.06.005

    仝永博, 劉征, 羅玉鐲, 等. 采用長弧操作的高阻抗電弧爐. 冶金設備, 2014(6):20 doi: 10.3969/j.issn.1001-1269.2014.06.005
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  2061
  • HTML全文瀏覽量:  956
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-08
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回