-
摘要: 全廢鋼連續加料電弧爐內長電弧作為爐內主要的能量來源,對廢鋼熔化及鋼液升溫至關重要。采用磁矢量勢的磁流體動力學方法建立了電弧爐內電弧的數值模型,并基于該數值模型對電弧爐內電磁場、溫度場和流場進行耦合求解,研究了電流大小、弧長對電弧爐內電弧的溫度、速度、壓力及氣體剪切力特性的影響。結果表明,全廢鋼連續加料電弧爐內電弧等離子體呈“長鐘型”分布,電弧柱較細長;隨著電流增大,電弧有效作用范圍增大,陽極表面電弧壓力和氣體剪切力增大;隨著弧長增加,電弧有效作用范圍減小,陽極表面的電弧壓力和氣體剪切力減小。短弧操作對熔池沖擊劇烈,長弧操作熔池較為平穩,合理控制電流和弧長能有效提高電弧熱效率。Abstract: The continuous scrap electric arc furnace adopts a long arc operation for a longer arc length and a larger discharge power. Although the long arc differs from the traditional welding short arc, few reports on long arc simulation research in the field of the electric arc furnace are available. As the main energy source in the electric arc furnace, the long arc is very important for the melting of scrap and heating of molten steel. Due to the complicated physical phenomena in the electric arc furnace, it is difficult to accurately obtain the distribution of various physical fields in the furnace. Therefore, numerical simulation is a frequently used method for studying the arc plasma in the electric arc furnace. In this paper, the magnetohydrodynamic method of the magnetic vector potential was used to establish the numerical model of an arc. Based on this numerical model, the electromagnetic field, temperature field, and flow field were coupled and solved. The effects of current and arc length on the temperature distribution, velocity distribution, arc force, and shear stress of the arc in the electric arc furnace were studied. The results show that the arc plasma in the electric arc furnace is distributed in a long bell shape, and the arc column is slender. As the current increases, the effective arc action range increases, and the arc pressure and shear stress on the anode surface increase. As the arc length increases, the effective arc action range decreases, and the arc pressure and shear stress on the anode surface decrease. The short arc operation has a strong effect on the molten pool, and the long arc operation is relatively stable. A reasonable control of the current and arc length effectively improves the thermal efficiency of the arc.
-
Key words:
- electric arc furnace /
- arc /
- plasma /
- temperature field /
- numerical simulation
-
表 1 電弧模擬邊界條件
Table 1. Boundary conditions of the arc simulation
Boundary T/K $\varphi $/V A/(W·h?m?1) AB 4130 or 1800 $ - \sigma \dfrac{{\partial \varphi }}{{\partial {\textit{z}}}} = J$or 0 $\dfrac{{\partial A}}{{\partial n}} = 0$ C 1800 $\dfrac{{\partial \varphi }}{{\partial {\textit{z}}}}{\rm{ = }}0$ $\dfrac{{\partial A}}{{\partial n}} = 0$ CD 1800 $\dfrac{{\partial \varphi }}{{\partial r}}{\rm{ = }}0$ 0 DE 1800 0 $\dfrac{{\partial A}}{{\partial n}} = 0$ AE $\dfrac{{\partial T}}{{\partial r}}{\rm{ = }}0$ $\dfrac{{\partial \varphi }}{{\partial r}}{\rm{ = }}0$ $\dfrac{{\partial A}}{{\partial n}} = 0$ 表 2 不同電弧電流下鮑曼實驗數據[28]與模擬數據中等離子體流速對比
Table 2. Comparison of the plasma flow rate between Bowman data and simulated data at different currents
Current/A Distance from the cathode/mm 20 38 55 Bowman/(m·s?1) Simulated/(m·s?1) Bowman/(m·s?1) Simulated/(m·s?1) Bowman/(m·s?1) Simulated/(m·s?1) 520 520 548 230 254 180 160 1150 1400 1415 1000 942 600 585 2160 1500 1449 950 920 500 733 www.77susu.com -
參考文獻
[1] Teng L D, Meador M, Ljungqvist P. Application of new generation electromagnetic stirring in electric arc furnace. Steel Res Int, 2017, 88(4): 1600202 doi: 10.1002/srin.201600202 [2] Hay T, Echterhof T, Visuri V V. Development of an electric arc furnace simulator based on a comprehensive dynamic process model. Processes, 2019, 7(11): 852 doi: 10.3390/pr7110852 [3] He X W. Current status and development trend of EAF steelmaking process at home and abroad. Eng Technol, 2016(67): 268何孝文. 煉鋼短流程工藝國內外現狀及發展趨勢. 工程技術, 2016(67):268 [4] Zhu R, Wei G S, Dong K. Development of green and intelligent technologies in electric arc furnace steelmaking processes//Proceedings of the 11th China Iron and Steel Annual Conference. Beijing, 2017: 1朱榮, 魏光升, 董凱. 電弧爐煉鋼綠色及智能化技術進展//第十一屆中國鋼鐵年會論文集. 北京, 2017: 1 [5] Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10 [6] Kukharev A, Bilousov V, Bilousov E, et al. The peculiarities of convective heat transfer in melt of a multiple-electrode arc furnace. Metals, 2019, 9(11): 1174 doi: 10.3390/met9111174 [7] Odenthal H J, Kemminger A, Krause F, et al. Review on modeling and simulation of the electric arc furnace (EAF). Steel Res Int, 2018, 89(1): 1700098 doi: 10.1002/srin.201700098 [8] Fathi A, Saboohi Y, ?krjanc I, et al. Low computational-complexity model of EAF arc-heat distribution. ISIJ Int, 2015, 55(7): 1353 doi: 10.2355/isijinternational.55.1353 [9] Guo Z Y, Zhao W H. Arc and Thermal Plasma. Beijing: Science Press, 1986過增元, 趙文華. 電弧和熱等離子體. 北京: 科學出版社, 1986 [10] Song C. Numerical Simulation and Experimental Verification of DC Arc Plasma Sprayed Alumina[Dissertation]. Changsha: Central South University, 2014宋琛. 直流電弧等離子體噴涂Al2O3的數值模擬與實驗驗證[學位論文]. 長沙: 中南大學, 2014 [11] Pan J J, Hu S S, Yang L J, et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten–plasma–anode model. Acta Mater, 2016, 118: 221 doi: 10.1016/j.actamat.2016.07.046 [12] Pan J J, Hu S S, Yang L J, et al. Simulation and analysis of heat transfer and fluid flow characteristics of variable polarity GTAW process based on a tungsten–arc-specimen coupled model. Int J Heat Mass Transfer, 2016, 96: 346 doi: 10.1016/j.ijheatmasstransfer.2016.01.014 [13] Zhou Q H. Numerical Simulation of DC Arc Plasma Torch[Dissertation]. Shanghai: Fudan University, 2009周前紅. 直流電弧等離子體炬的數值模擬[學位論文]. 上海: 復旦大學, 2009 [14] Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc. J Appl Phys, 1983, 54(3): 1293 doi: 10.1063/1.332195 [15] Lowke J J, Kovitya P, Schmidt H P. Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys, 2000, 25(11): 1600 [16] Fan D, Chen J H, Ushio M. Numerical analysis of the heat and mass transfer process in TIG arc. Chin J Mech Eng, 1998, 34(2): 39 doi: 10.3321/j.issn:0577-6686.1998.02.007樊丁, 陳劍虹, 牛尾誠夫. TIG電弧傳熱傳質過程的數值分析. 機械工程學報, 1998, 34(2):39 doi: 10.3321/j.issn:0577-6686.1998.02.007 [17] Lu F G, Yao S, Qian W F. Numerical analysis on tungsten inert gas welding arc. J Shanghai Jiaotong Univ, 2003, 37(12): 1862 doi: 10.3321/j.issn:1006-2467.2003.12.012蘆鳳桂, 姚舜, 錢偉方. 鎢極氬弧焊焊接電弧數值分析. 上海交通大學學報, 2003, 37(12):1862 doi: 10.3321/j.issn:1006-2467.2003.12.012 [18] Lu F G. 3D Numerical Simulation onDynamic Interaction between TIG Welding Arc and Weld Pool[Dissertation]. Shanghai: Shanghai Jiaotong University, 2004蘆鳳桂. TIG焊接電弧與熔池動態交互作用三維數值模擬[學位論文]. 上海: 上海交通大學, 2004 [19] Li L M, Li B K, Liu L C, et al. Numerical modeling of fluid flow, heat transfer and arc–melt interaction in tungsten inert gas welding. High Temp Mater Processes, 2017, 36(4): 427 doi: 10.1515/htmp-2016-0120 [20] Wang X X, Huang J K, Huang Y, et al. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling. Appl Therm Eng, 2017, 113: 27 doi: 10.1016/j.applthermaleng.2016.11.008 [21] Hsu K C, Pfender E. Two-temperature modeling of the free-burning, high-intensity arc. J Appl Phys, 1983, 54(8): 4359 doi: 10.1063/1.332672 [22] Capitelli M, Colonna G, Gorse C, et al. Transport properties of high temperature air in local thermodynamic equilibrium. Eur Phys J D, 2000, 11(2): 279 doi: 10.1007/s100530070094 [23] Zhu Y B, Song D L, Zeng Z S, et al. DC Electric Arc Furnace Steelmaking Technology. Beijing: Metallurgical Industry Press, 1997朱應波, 宋東亮, 曾昭生, 等. 直流電弧爐煉鋼技術. 北京: 冶金工業出版社, 1997 [24] Wang F, Jin Z, Zhu Z. Numerical study of dc arc plasma and molten bath in dc electric arc furnace. Ironmaking Steelmaking, 2006, 33(1): 39 doi: 10.1179/174328105X71326 [25] Morris J C, Bach G R, Krey R U, et al. Continuum radiated power for high-temperature air and its components. AIAA J, 1966, 4(7): 1223 doi: 10.2514/3.3652 [26] Wang F H, Jin Z J, Zhu Z S. Numerical simulation of plasma in DC electric arc furnace. High Vol Apparatus, 2005, 41(4): 241 doi: 10.3969/j.issn.1001-1609.2005.04.001王豐華, 金之儉, 朱子述. 直流電弧爐電弧等離子體射流的數值模擬. 高壓電器, 2005, 41(4):241 doi: 10.3969/j.issn.1001-1609.2005.04.001 [27] Wang F H. Study of Modeling the Electric Arc Furnace and Its Application[Dissertation]. Shanghai: Shanghai Jiaotong University, 2006王豐華. 電弧爐建模研究及其應用[學位論文]. 上海: 上海交通大學, 2006 [28] Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A. J Phys D Appl Phys, 1972, 5(8): 1422 doi: 10.1088/0022-3727/5/8/309 [29] Qi J W, Hu M, Shao Z R, et al. Numerical simulation of three-dimensional long arc magneto-hydrodynamic. Ind Heat, 2018, 47(6): 38 doi: 10.3969/j.issn.1002-1639.2018.06.011齊景偉, 胡明, 邵哲如, 等. 三維長電弧磁流體動力學數值模擬. 工業加熱, 2018, 47(6):38 doi: 10.3969/j.issn.1002-1639.2018.06.011 [30] Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool. Weld J, 1990, 69(9): 346 [31] Tong Y B, Liu Z, Luo Y Z, et al. High impedance EAF of long arc operation. Metall Equip, 2014(6): 20 doi: 10.3969/j.issn.1001-1269.2014.06.005仝永博, 劉征, 羅玉鐲, 等. 采用長弧操作的高阻抗電弧爐. 冶金設備, 2014(6):20 doi: 10.3969/j.issn.1001-1269.2014.06.005 -