Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process
-
摘要: 對含磷高強IF鋼中MnS夾雜物控制進行了分析。通過對含磷高強IF鋼中添加稀土進行對比試驗,借助掃描電鏡等設備對鑄坯1/8、1/2、7/8厚度方向的試樣以及熱軋、冷軋、連退工序的帶鋼試樣進行了夾雜物統計及二維形貌的觀測對比,并對鑄坯試樣中小樣電解的夾雜物及軋制各工序試樣中原貌提取的夾雜物進行三維形貌的觀測對比。結果表明:鑄坯中心MnS夾雜物數量分布明顯大于鑄坯近表面,稀土的加入,先與鋼中S相結合,并在凝固過程中較MnS提前析出,生成了小尺寸的球狀夾雜物,可明顯降低鑄坯各位置MnS夾雜物的尺寸及數量;未加稀土鋼在帶鋼軋制各工序中MnS夾雜物尺寸為10 μm左右,且具有遺傳性,在軋制過程中壓延變長,但沒有碎化彌散。加入稀土后形成了S–O–Ce類夾雜物,形態呈球形,尺寸為2~5 μm,且獨立彌散分布,不會對帶鋼組織連續性造成影響,有利于產品各相關性能。Abstract: The control of MnS inclusions in high strength IF steel containing phosphorus was analyzed. The inclusion statistics and two-dimensional morphologies of the samples at the slab thicknesses of 1/8, 1/2, and 7/8 and in hot rolling, cold rolling, and continuous annealing processes were observed and compared via an ASPEX scanning electron microscope (SEM). In addition, the three-dimensional morphologies of the inclusions extracted from the electrolysis of billet samples and inclusions extracted from the original rolling process samples were observed and compared. The results show that the amount distribution of MnS inclusions in the center of the slab is obviously larger than that near the surface of the slab. When a rare earth element is added, it is preferentially combined with the S in the steel and precipitates earlier than MnS in the solidification process, forming small spherical inclusions, which can significantly reduce the size and quantity of MnS inclusions at various positions of the slab. The size of MnS inclusions of the steel strip without a rare earth element addition is approximately 10 μm in each rolling process, which is inherited. During the rolling process, MnS inclusions become longer, but there is no fragmentation and dispersion. S–O–Ce inclusions are formed after adding a rare earth element. These inclusions are spherical, 2–5 μm in size, and distributed independently, which do not affect the structure continuity of the strip steel and benefit the relevant properties of the products.
-
圖 8 軋制各工序1#和2#帶鋼中典型夾雜物二維形貌對比。(a)1#熱軋;(b)1#冷軋;(c)1#連退;(d)2#熱軋;(e)2#冷軋;(f)2#連退
Figure 8. Comparison of the two-dimensional morphologies of typical inclusions in the 1# and 2# strips in each rolling process: (a) 1# hot rolling; (b) 1# cold rolling; (c) 1# continuous annealing; (d) 2# hot rolling; (e) 2# cold rolling; (f) 2# continuous annealing
圖 9 軋制各工序1#和2#帶鋼中典型夾雜物三維形貌對比。(a)1#熱軋;(b)1#冷軋;(c)1#連退;(d)2#熱軋;(e)2#冷軋;(f)2#連退
Figure 9. Comparison of the three-dimensional morphologies of typical inclusions in the 1# and 2# strips in each rolling process: (a) 1# hot rolling; (b) 1# cold rolling; (c) 1# continuous annealing; (d) 2# hot rolling; (e) 2# cold rolling; (f) 2# continuous annealing
表 1 試驗鋼化學成分(質量分數)
Table 1. Chemical composition of the tested steel
% C Si Mn P S Als Nb Ti B Ce 0.0020 0.15 0.68 0.078 0.005 0.029 0.027 0.022 0.0012 — 表 2 軋制各工序執行的工藝方案
Table 2. Process plan for each rolling process
Roughing temperature/
℃Beginning temperature of finishing rolling /
℃End temperature
of finishing
rolling /℃Coiling temperature/
℃Heating-up section temperature/℃ Soaking section ttemperature/℃ Rapid cooling section temperature/℃ Overaging section temperature/℃ Final cooling section temperature/℃ 1100 1050 920 720 800 800 300 ± 20 ≤400 ≤150 表 3 IF鋼加入稀土Ce后鋼中化學成分(質量分數)
Table 3. Chemical composition of the test steel after adding Ce
% C Si Mn P S Als Nb Ti B Ce 0.0018 0.14 0.70 0.074 0.005 0.032 0.025 0.025 0.0010 0.0022 表 4 稀土夾雜物生成的熱力學計算
Table 4. Thermodynamic calculation of the formation of rare earth inclusions
% 化學反應式 $\Delta {G^{\ominus}}$$ {\rm{ = }}A{\rm{ + }}BT\;{\rm{J}}\cdot{{\rm{mol}}^{{\rm{ - 1}}}} $ A B 2[Ce] + 3[O] = Ce2O3(s) ?1431090.0 360.06 [Ce] + 2[O] = CeO2(s) ?854274.7 249.11 [Ce] + [S] = CeS(s) ?422783.0 120.58 2[Ce] + 3[S] = Ce2S3(s) ?1074584.0 328.24 3[Ce] + 4[S] = Ce3S4(s) ?1493010.0 438.90 2[Ce] + 2[O] + [S] = Ce2O2S(s) ?1353592.4 331.60 [Ce] + [Al] + 3[O] = CeAlO3(s) ?1366460.0 364.00 www.77susu.com -
參考文獻
[1] Wang C, Yu Y, Liu K, et al. Forming reason and control of strip fracture in high strength IF steel containing phosphorus during hot-rolling process. China Metall, 2016, 26(1): 17王暢, 于洋, 劉珂, 等. 含磷高強IF鋼熱軋軋裂的形成原因及控制. 中國冶金, 2016, 26(1):17 [2] Xiong D L, Mao W M. Precipitation hardening of FeTiP phase in P-added high strength IF steel. J Univ Sci Technol Beijing, 2000, 22(4): 350 doi: 10.3321/j.issn:1001-053X.2000.04.017熊道禮, 毛衛民. 含磷高強IF鋼中FeTiP相的脫溶及硬化現象. 北京科技大學學報, 2000, 22(4):350 doi: 10.3321/j.issn:1001-053X.2000.04.017 [3] Wang M, Bao Y P, Yang Q, et al. Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process. Int J Miner Metall Mater, 2015, 22(12): 1252 doi: 10.1007/s12613-015-1192-x [4] Li Y H, Bao Y P, Wang R, et al. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process. Int J Miner Metall Mater, 2018, 25(2): 153 doi: 10.1007/s12613-018-1558-y [5] Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8 [6] Li X, Bao Y P, Wang M, et al. Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface. Int J Miner Metall Mater, 2016, 23(5): 511 doi: 10.1007/s12613-016-1262-8 [7] Wang R, Bao Y P, Li Y H, et al. Influence of metallurgical processing parameters on defects in cold-rolled steel sheet caused by inclusions. Int J Miner Metall Mater, 2019, 26(4): 440 doi: 10.1007/s12613-019-1751-7 [8] Wang R, Bao Y P, Yan Z J, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets. Int J Miner Metall Mater, 2019, 26(2): 178 doi: 10.1007/s12613-019-1722-z [9] Tavares S S M, Pardal J M, Martins T R B, et al. Influence of sulfur content on the corrosion resistance of 17-4PH stainless steel. J Mater Eng Perform, 2017, 26(6): 2512 doi: 10.1007/s11665-017-2693-8 [10] Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes. JOM, 2018, 70(11): 2513 doi: 10.1007/s11837-018-3026-6 [11] Liu X G, Wang C, Deng Q F, et al. High-temperature fracture behavior of MnS inclusions based on GTN model. J Iron Steel Res Int, 2019, 26(9): 941 doi: 10.1007/s42243-018-0202-4 [12] Pan X Q, Yang J, Zhi J J, et al. Evolution of inclusions in steelmaking process for ultra low carbon BH auto exposed panel. Iron Steel, 2019, 54(8): 48潘曉倩, 楊健, 職建軍, 等. 超低碳汽車外板BH鋼煉鋼過程中夾雜物的演變. 鋼鐵, 2019, 54(8):48 [13] Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel. Acta Metall Sin, 2018, 54(9): 1253 doi: 10.11900/0412.1961.2018.00079黃宇, 成國光, 謝有. 稀土Ce對釬具鋼中夾雜物的改質機理研究. 金屬學報, 2018, 54(9):1253 doi: 10.11900/0412.1961.2018.00079 [14] Gao S, Wang M, Guo J L, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al-killed titanium alloyed interstitial free steel. Steel Res Int, 2019, 90(10): 1900194 doi: 10.1002/srin.201900194 [15] Hu D L, Liu H, Xie J B, et al. Analysis of precipitation behavior of MnS in sulfur-bearing steel system with finite-difference segregation model. J Iron Steel Res Int, 2018, 25(8): 803 doi: 10.1007/s42243-018-0117-0 [16] Chen S F, Liu X, Lei H, et al. Precipitation behavior of MnS inclusions during solidification of manganese steel. J Univ Sci Technol Liaoning, 2017, 40(4): 241陳士富, 劉學, 雷洪, 等. 錳鋼凝固過程中MnS夾雜物析出行為. 遼寧科技大學學報, 2017, 40(4):241 [17] Zheng W, Qi P P, Shen X, et al. Precipitation behavior of MnS in low-carbon low-sulfur steel. J Wuhan Univ Sci Technol, 2016, 39(4): 241鄭萬, 齊盼盼, 沈星, 等. 低碳低硫鋼中MnS析出行為分析. 武漢科技大學學報:自然科學版, 2016, 39(4):241 [18] Goto H, Miyazawa K I, Yamaguchi K I, et al. Effect of cooling rate on oxide precipitation during solidification of low carbon steels. ISIJ Int, 1994, 34(5): 414 doi: 10.2355/isijinternational.34.414 [19] Chen Y L, Wang Y, Zhao A M. Precipitation of AIN and MnS in low carbon aluminium-killed steel. J Iron Steel Res Int, 2012, 19(4): 51 doi: 10.1016/S1006-706X(12)60087-9 [20] Wang H, Bao Y P, Zhao M, et al. Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process. Int J Miner Metall Mater, 2019, 26(11): 1372 doi: 10.1007/s12613-019-1871-0 [21] Li M L, Wang F M, Li C R, et al. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels. Int J Miner Metall Mater, 2015, 22(6): 589 doi: 10.1007/s12613-015-1111-1 [22] Yan J C, Li T, Shang Z Q, et al. Three-dimensional characterization of MnS inclusions in steel during rolling process. Mater Charact, 2019, 158: 109944 doi: 10.1016/j.matchar.2019.109944 [23] Liu Y Q, Wang L J, Chou K C. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths, 2014, 32(8): 759 doi: 10.1016/S1002-0721(14)60137-X [24] Cheng C X, Yang X J, He Y, et al. The effect of Ce on A356 alloy and the study of its refining mechanism. Chin J Rare Met, 2018, 42(11): 1127程昌學, 楊湘杰, 何毅, 等. Ce對A356合金的影響及細化機制的研究. 稀有金屬, 2018, 42(11):1127 [25] Zhou Y, Liu W D, Yan J, et al. Valence electron theoretical interpretation on effect of rare-earth on antideformability of MnS. Chin J Rare Met, 2006, 30(2): 185 doi: 10.3969/j.issn.0258-7076.2006.02.014周宇, 劉偉東, 閻杰, 等. 稀土元素對MnS夾雜物變形能力影響的價電子理論分析. 稀有金屬, 2006, 30(2):185 doi: 10.3969/j.issn.0258-7076.2006.02.014 -