<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

稀土Ce對含磷高強IF鋼鑄軋全過程MnS夾雜物影響

王皓 包燕平 智建國 高帥 王敏 史超

王皓, 包燕平, 智建國, 高帥, 王敏, 史超. 稀土Ce對含磷高強IF鋼鑄軋全過程MnS夾雜物影響[J]. 工程科學學報, 2020, 42(S): 1-8. doi: 10.13374/j.issn2095-9389.2020.04.06.s11
引用本文: 王皓, 包燕平, 智建國, 高帥, 王敏, 史超. 稀土Ce對含磷高強IF鋼鑄軋全過程MnS夾雜物影響[J]. 工程科學學報, 2020, 42(S): 1-8. doi: 10.13374/j.issn2095-9389.2020.04.06.s11
WANG Hao, BAO Yan-ping, ZHI Jian-guo, GAO Shuai, WANG Min, SHI Chao. Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process[J]. Chinese Journal of Engineering, 2020, 42(S): 1-8. doi: 10.13374/j.issn2095-9389.2020.04.06.s11
Citation: WANG Hao, BAO Yan-ping, ZHI Jian-guo, GAO Shuai, WANG Min, SHI Chao. Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process[J]. Chinese Journal of Engineering, 2020, 42(S): 1-8. doi: 10.13374/j.issn2095-9389.2020.04.06.s11

稀土Ce對含磷高強IF鋼鑄軋全過程MnS夾雜物影響

doi: 10.13374/j.issn2095-9389.2020.04.06.s11
基金項目: 國家自然科學基金資助項目(51874021);上海大學省部共建高品質特殊鋼冶金與指標國家重點實驗室開放課題資助項目(SKLASS 2017-12);國家重點研發計劃專項資助(2016YFB0300102)
詳細信息
    通訊作者:

    E-mail:baoyp@ustb.edu.cn

  • 中圖分類號: TG142.71

Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process

More Information
  • 摘要: 對含磷高強IF鋼中MnS夾雜物控制進行了分析。通過對含磷高強IF鋼中添加稀土進行對比試驗,借助掃描電鏡等設備對鑄坯1/8、1/2、7/8厚度方向的試樣以及熱軋、冷軋、連退工序的帶鋼試樣進行了夾雜物統計及二維形貌的觀測對比,并對鑄坯試樣中小樣電解的夾雜物及軋制各工序試樣中原貌提取的夾雜物進行三維形貌的觀測對比。結果表明:鑄坯中心MnS夾雜物數量分布明顯大于鑄坯近表面,稀土的加入,先與鋼中S相結合,并在凝固過程中較MnS提前析出,生成了小尺寸的球狀夾雜物,可明顯降低鑄坯各位置MnS夾雜物的尺寸及數量;未加稀土鋼在帶鋼軋制各工序中MnS夾雜物尺寸為10 μm左右,且具有遺傳性,在軋制過程中壓延變長,但沒有碎化彌散。加入稀土后形成了S–O–Ce類夾雜物,形態呈球形,尺寸為2~5 μm,且獨立彌散分布,不會對帶鋼組織連續性造成影響,有利于產品各相關性能。

     

  • 圖  1  鈰鐵合金在冶煉過程的具體加入時機

    Figure  1.  Ce–Fe alloy adding during steelmaking processes

    圖  2  鑄坯取樣位置示意圖

    Figure  2.  Schematic of the slab sampling location

    圖  3  鋼中稀土型夾雜物析出規律

    Figure  3.  Precipitation of rare earth inclusions in steel

    圖  4  1#和2#鑄坯不同位置MnS夾雜物尺寸及數量統計

    Figure  4.  Size and quantity statistics of MnS inclusions at different positions of 1# and 2# slabs

    圖  5  1#(a)和2#(b)鑄坯電解后夾雜物形貌對比

    Figure  5.  Comparison of inclusion morphologies after electrolysis of 1# (a) and 2# (b) slabs

    圖  6  鑄坯中MnS析出規律

    Figure  6.  Precipitation of MnS in the slab

    圖  7  軋制各工序1#和2#試樣MnS夾雜物尺寸及數量統計

    Figure  7.  Statistics of the size and quantity of MnS inclusions in 1# and 2# samples in each rolling process

    圖  8  軋制各工序1#和2#帶鋼中典型夾雜物二維形貌對比。(a)1#熱軋;(b)1#冷軋;(c)1#連退;(d)2#熱軋;(e)2#冷軋;(f)2#連退

    Figure  8.  Comparison of the two-dimensional morphologies of typical inclusions in the 1# and 2# strips in each rolling process: (a) 1# hot rolling; (b) 1# cold rolling; (c) 1# continuous annealing; (d) 2# hot rolling; (e) 2# cold rolling; (f) 2# continuous annealing

    圖  9  軋制各工序1#和2#帶鋼中典型夾雜物三維形貌對比。(a)1#熱軋;(b)1#冷軋;(c)1#連退;(d)2#熱軋;(e)2#冷軋;(f)2#連退

    Figure  9.  Comparison of the three-dimensional morphologies of typical inclusions in the 1# and 2# strips in each rolling process: (a) 1# hot rolling; (b) 1# cold rolling; (c) 1# continuous annealing; (d) 2# hot rolling; (e) 2# cold rolling; (f) 2# continuous annealing

    表  1  試驗鋼化學成分(質量分數)

    Table  1.   Chemical composition of the tested steel %

    CSiMnPSAlsNbTiBCe
    0.00200.150.680.0780.0050.0290.0270.0220.0012
    下載: 導出CSV

    表  2  軋制各工序執行的工藝方案

    Table  2.   Process plan for each rolling process

    Roughing temperature/
    Beginning temperature of finishing rolling /
    End temperature
    of finishing
    rolling /℃
    Coiling temperature/
    Heating-up section temperature/℃Soaking section ttemperature/℃Rapid cooling section temperature/℃Overaging section temperature/℃Final cooling section temperature/℃
    11001050920720800800300 ± 20≤400≤150
    下載: 導出CSV

    表  3  IF鋼加入稀土Ce后鋼中化學成分(質量分數)

    Table  3.   Chemical composition of the test steel after adding Ce %

    CSiMnPSAlsNbTiBCe
    0.00180.140.700.0740.0050.0320.0250.0250.00100.0022
    下載: 導出CSV

    表  4  稀土夾雜物生成的熱力學計算

    Table  4.   Thermodynamic calculation of the formation of rare earth inclusions %

    化學反應式$\Delta {G^{\ominus}}$$ {\rm{ = }}A{\rm{ + }}BT\;{\rm{J}}\cdot{{\rm{mol}}^{{\rm{ - 1}}}} $
    AB
    2[Ce] + 3[O] = Ce2O3(s)?1431090.0360.06
    [Ce] + 2[O] = CeO2(s)?854274.7249.11
    [Ce] + [S] = CeS(s)?422783.0120.58
    2[Ce] + 3[S] = Ce2S3(s)?1074584.0328.24
    3[Ce] + 4[S] = Ce3S4(s)?1493010.0438.90
    2[Ce] + 2[O] + [S] = Ce2O2S(s)?1353592.4331.60
    [Ce] + [Al] + 3[O] = CeAlO3(s)?1366460.0364.00
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang C, Yu Y, Liu K, et al. Forming reason and control of strip fracture in high strength IF steel containing phosphorus during hot-rolling process. China Metall, 2016, 26(1): 17

    王暢, 于洋, 劉珂, 等. 含磷高強IF鋼熱軋軋裂的形成原因及控制. 中國冶金, 2016, 26(1):17
    [2] Xiong D L, Mao W M. Precipitation hardening of FeTiP phase in P-added high strength IF steel. J Univ Sci Technol Beijing, 2000, 22(4): 350 doi: 10.3321/j.issn:1001-053X.2000.04.017

    熊道禮, 毛衛民. 含磷高強IF鋼中FeTiP相的脫溶及硬化現象. 北京科技大學學報, 2000, 22(4):350 doi: 10.3321/j.issn:1001-053X.2000.04.017
    [3] Wang M, Bao Y P, Yang Q, et al. Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process. Int J Miner Metall Mater, 2015, 22(12): 1252 doi: 10.1007/s12613-015-1192-x
    [4] Li Y H, Bao Y P, Wang R, et al. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process. Int J Miner Metall Mater, 2018, 25(2): 153 doi: 10.1007/s12613-018-1558-y
    [5] Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8
    [6] Li X, Bao Y P, Wang M, et al. Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface. Int J Miner Metall Mater, 2016, 23(5): 511 doi: 10.1007/s12613-016-1262-8
    [7] Wang R, Bao Y P, Li Y H, et al. Influence of metallurgical processing parameters on defects in cold-rolled steel sheet caused by inclusions. Int J Miner Metall Mater, 2019, 26(4): 440 doi: 10.1007/s12613-019-1751-7
    [8] Wang R, Bao Y P, Yan Z J, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets. Int J Miner Metall Mater, 2019, 26(2): 178 doi: 10.1007/s12613-019-1722-z
    [9] Tavares S S M, Pardal J M, Martins T R B, et al. Influence of sulfur content on the corrosion resistance of 17-4PH stainless steel. J Mater Eng Perform, 2017, 26(6): 2512 doi: 10.1007/s11665-017-2693-8
    [10] Shi W N, Yang S F, Dong A P, et al. Understanding the corrosion mechanism of spring steel induced by MnS inclusions with different sizes. JOM, 2018, 70(11): 2513 doi: 10.1007/s11837-018-3026-6
    [11] Liu X G, Wang C, Deng Q F, et al. High-temperature fracture behavior of MnS inclusions based on GTN model. J Iron Steel Res Int, 2019, 26(9): 941 doi: 10.1007/s42243-018-0202-4
    [12] Pan X Q, Yang J, Zhi J J, et al. Evolution of inclusions in steelmaking process for ultra low carbon BH auto exposed panel. Iron Steel, 2019, 54(8): 48

    潘曉倩, 楊健, 職建軍, 等. 超低碳汽車外板BH鋼煉鋼過程中夾雜物的演變. 鋼鐵, 2019, 54(8):48
    [13] Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel. Acta Metall Sin, 2018, 54(9): 1253 doi: 10.11900/0412.1961.2018.00079

    黃宇, 成國光, 謝有. 稀土Ce對釬具鋼中夾雜物的改質機理研究. 金屬學報, 2018, 54(9):1253 doi: 10.11900/0412.1961.2018.00079
    [14] Gao S, Wang M, Guo J L, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al-killed titanium alloyed interstitial free steel. Steel Res Int, 2019, 90(10): 1900194 doi: 10.1002/srin.201900194
    [15] Hu D L, Liu H, Xie J B, et al. Analysis of precipitation behavior of MnS in sulfur-bearing steel system with finite-difference segregation model. J Iron Steel Res Int, 2018, 25(8): 803 doi: 10.1007/s42243-018-0117-0
    [16] Chen S F, Liu X, Lei H, et al. Precipitation behavior of MnS inclusions during solidification of manganese steel. J Univ Sci Technol Liaoning, 2017, 40(4): 241

    陳士富, 劉學, 雷洪, 等. 錳鋼凝固過程中MnS夾雜物析出行為. 遼寧科技大學學報, 2017, 40(4):241
    [17] Zheng W, Qi P P, Shen X, et al. Precipitation behavior of MnS in low-carbon low-sulfur steel. J Wuhan Univ Sci Technol, 2016, 39(4): 241

    鄭萬, 齊盼盼, 沈星, 等. 低碳低硫鋼中MnS析出行為分析. 武漢科技大學學報:自然科學版, 2016, 39(4):241
    [18] Goto H, Miyazawa K I, Yamaguchi K I, et al. Effect of cooling rate on oxide precipitation during solidification of low carbon steels. ISIJ Int, 1994, 34(5): 414 doi: 10.2355/isijinternational.34.414
    [19] Chen Y L, Wang Y, Zhao A M. Precipitation of AIN and MnS in low carbon aluminium-killed steel. J Iron Steel Res Int, 2012, 19(4): 51 doi: 10.1016/S1006-706X(12)60087-9
    [20] Wang H, Bao Y P, Zhao M, et al. Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process. Int J Miner Metall Mater, 2019, 26(11): 1372 doi: 10.1007/s12613-019-1871-0
    [21] Li M L, Wang F M, Li C R, et al. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels. Int J Miner Metall Mater, 2015, 22(6): 589 doi: 10.1007/s12613-015-1111-1
    [22] Yan J C, Li T, Shang Z Q, et al. Three-dimensional characterization of MnS inclusions in steel during rolling process. Mater Charact, 2019, 158: 109944 doi: 10.1016/j.matchar.2019.109944
    [23] Liu Y Q, Wang L J, Chou K C. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths, 2014, 32(8): 759 doi: 10.1016/S1002-0721(14)60137-X
    [24] Cheng C X, Yang X J, He Y, et al. The effect of Ce on A356 alloy and the study of its refining mechanism. Chin J Rare Met, 2018, 42(11): 1127

    程昌學, 楊湘杰, 何毅, 等. Ce對A356合金的影響及細化機制的研究. 稀有金屬, 2018, 42(11):1127
    [25] Zhou Y, Liu W D, Yan J, et al. Valence electron theoretical interpretation on effect of rare-earth on antideformability of MnS. Chin J Rare Met, 2006, 30(2): 185 doi: 10.3969/j.issn.0258-7076.2006.02.014

    周宇, 劉偉東, 閻杰, 等. 稀土元素對MnS夾雜物變形能力影響的價電子理論分析. 稀有金屬, 2006, 30(2):185 doi: 10.3969/j.issn.0258-7076.2006.02.014
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  1009
  • HTML全文瀏覽量:  609
  • PDF下載量:  53
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-06
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回