-
摘要: 為了實現冶煉過程中對爐渣成分的實時預測,給電弧爐煉鋼過程中加料等工藝操作提供幫助,對影響爐內爐渣成分的因素(爐內反應、加料與流渣)進行了研究,構建了電弧爐煉鋼爐渣成分實時預報模型。結果顯示,該模型能夠實時預測爐內爐渣質量和成分變化,預報爐內鐵元素氧化狀況,可為冶煉過程中添加輔料與流渣等工藝操作提供指導作用。通過與現場爐渣取樣檢測結果進行對比,得到爐渣中CaO、SiO2和FeO實測成分與模型預測成分的平均相對誤差分別為12.66%、11.17%和19.16%。Abstract: To realize the real-time prediction of slag composition in the smelting process and provide the assistance to the operations in electric arc furnace (EAF) steelmaking process such as charging, the influence factors on the slag composition in the furnace (furnace reaction, charging, and slag overflowing) were studied, and the real-time prediction model of slag composition in EAF steelmaking process was established. In the results, the model could predict the slag quality, the slag composition, and the oxidation status of Fe element in the furnace in real time, providing the guidance for the auxiliary material charging and the slag flowing in the smelting process. Compared with the slag sampling results, the average relative errors of CaO, SiO2, and FeO content in the slag between the actual measurement and the model predicted values were 12.66%, 11.17%, and 19.16%, respectively.
-
表 1 模型預測與實驗結果相對誤差
Table 1. Relative error between the model prediction and the experimental results
Time Type CaO SiO2 FeO conversion Mass fraction / % Error, δ/ % Mass fraction / % Error, δ/ % Mass fraction / % Error, δ/ % Early Detection 26.16 5.96 17.19 3.40 47.53 3.50 Prediction 27.72 16.61 45.83 Middle Detection 36.78 4.00 11.15 25.50 39.28 0.50 Prediction 38.14 13.99 39.07 Later Detection 31.66 19.00 6.85 16.10 52.12 5.20 Prediction 37.69 7.95 49.36 www.77susu.com -
參考文獻
[1] Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10 [2] Song W L. Electric Arc Furnace Steelmaking. Beijing: Metallurgical Industry Press, 1996宋文林. 電弧爐煉鋼. 北京: 冶金工業出版社, 1996 [3] Cavaliere P. Electric Arc Furnace: Most Efficient Technologies for Greenhouse Emissions Abatement [Dissertation]. Lecce: University of Salento, 2019 [4] Yang L Z. The Research of Endpoint Composition Control in EAF-LF Steelmaking Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2015楊凌志. EAF-LF煉鋼工序終點成分控制研究[學位論文]. 北京: 北京科技大學, 2015 [5] Bird S C, Drizo A. EAF steel slag filters for phosphorus removal from milk parlor effluent: the effects of solids loading, alternate feeding regimes and in-series design. Water, 2010, 2(3): 484 doi: 10.3390/w2030484 [6] Dehkordi B, Moallem M, Parsapour A. Predicting foaming slag quality in electric arc furnace using power quality indices and fuzzy method. IEEE Trans Instrum Meas, 2011, 60(12): 3845 doi: 10.1109/TIM.2010.2085190 [7] Guo J L. Fundamental Study on Recycled Use of LF Slags [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2009郭家林. LF爐渣返回應用的基礎研究[學位論文]. 西安: 西安建筑科技大學, 2009 [8] Yang L Z, Guo Y F, Chen F, et al. Alloy yield prediction model based on the data analysis in EAF steelmaking process // 8th International Symposium on High-Temperature Metallurgical Processing. San Diego: Springer International Publishing, 2017: 79 [9] Yang L Z, Zhu R. The research status quo and prospect of composition control model in EAF steelmaking. Ind Heat, 2016, 45(1): 26 doi: 10.3969/j.issn.1002-1639.2016.01.007楊凌志, 朱榮. 電弧爐煉鋼成分控制模型研究現狀與展望. 工業加熱, 2016, 45(1):26 doi: 10.3969/j.issn.1002-1639.2016.01.007 [10] Sadeghian A, Lavers J D. Dynamic reconstruction of nonlinear v?i characteristic in electric arc furnaces using adaptive neuro-fuzzy rule-based networks. Appl Soft Comput, 2011, 11(1): 1448 doi: 10.1016/j.asoc.2010.04.016 [11] Wang L J, Zhang J, Niu S T, et al. The dephosphorization foamy slags in electric arc furnace. Eng Chem Metall, 1994, 15(4): 355王力軍, 張鑒, 牛四通, 等. 電弧爐煉鋼中的脫磷泡沫渣. 化工冶金, 1994, 15(4):355 [12] Li J S, Liu H W, Me H Y, et al. Practice of refining steel grade SPHD by converter process // Proceedings of 5th Baosteel BAC Annual Meeting. Shanghai, 2013: 1李建生, 劉宏偉, 么洪勇, 等. 轉爐冶煉SPHD鋼生產實踐 // 第五屆寶鋼學術年會論文集. 上海, 2013: 1 [13] Fan J, Wang Y J, Li J W, et al. Development of prediction model of slag component in the course of converter working base on the craft of less-slag-smelting // Proceedings of the 8th National Steelmaking Conference. Xi'an, 2014: 1范佳, 王彥杰, 李建文, 等. 基于少渣冶煉工藝下的轉爐冶煉過程爐渣成分預報模型的開發 // 第十八屆(2014年)全國煉鋼學術會議論文集. 西安, 2014: 1 [14] Yu R H, Chen X L, Ni Z B, et al. Application of LIBS automatic spectral peak search to online slag analysis. J Hefei Univ Technol Nat Sci, 2014(12): 1474余嶸華, 陳興龍, 倪志波, 等. LIBS譜線自動尋峰在爐渣成分在線分析中的應用. 合肥工業大學學報: 自然科學版, 2014(12):1474 [15] Chen X L, Dong F Z, Wang J G, et al. Slag quantitative analysis based on PLS model by laser-induced breakdown spectroscopy. Acta Photon Sin, 2014, 43(9): 120陳興龍, 董鳳忠, 王靜鴿, 等. PLS算法在激光誘導擊穿光譜分析爐渣成分中的應用. 光子學報, 2014, 43(9):120 [16] Wang B H, Yang L Z, Guo Y F, et al. Present situation composition forecast in EAF steelmaking and influence of molten bath stirring. China Metall, 2017, 27(12): 1王柏惠, 楊凌志, 郭宇峰, 等. 電弧爐煉鋼成分預報現狀與熔池攪拌對其影響. 中國冶金, 2017, 27(12):1 [17] Guo Y F, Cao J R, Guo Q Y. Research on moving object detection based on improved background subtraction method of EmguCV. J Zhongyuan Univ Technol, 2017, 28(4): 86 doi: 10.3969/j.issn.1671-6906.2017.04.016郭永鋒, 曹竟如, 郭清宇. 基于EmguCV的改進背景減除法運動目標檢測方法研究. 中原工學院學報, 2017, 28(4):86 doi: 10.3969/j.issn.1671-6906.2017.04.016 [18] Xue Y C, Dai W R, Lu H H, et al. Design of the webcam intelligent searching system based on EmguCV. J Changzhou Inst Technol, 2013, 26(3-4): 9薛宇城, 戴未然, 盧捍華, 等. 基于EmguCV的網絡攝像智能搜索系統的設計. 常州工學院學報, 2013, 26(3-4):9 [19] Wagner B. Effective C# - Covers C# 4.0: 50 Specific Ways to Improve Your C#. Beijing: China Machine Press, 2006 [20] Moore A. Visual Studio 2010 All-in-One For Dummies. Indianapolis: Wiley Publishing Inc., 2010 [21] Yang L Z, Zhu R, Ning J C, et al. Research on the molten steel components and temperature forecast model for EAF steelmaking plant. Ind Heat, 2013, 42(1): 15 doi: 10.3969/j.issn.1002-1639.2013.01.005楊凌志, 朱榮, 寧建成, 等. 電弧爐煉鋼廠鋼水成分與溫度預報模型的研究. 工業加熱, 2013, 42(1):15 doi: 10.3969/j.issn.1002-1639.2013.01.005 -