<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電弧爐煉鋼爐渣成分實時預報模型

楊凌志 薛波濤 宋景凌 魏光升 郭宇峰 謝鑫 劉全勝

楊凌志, 薛波濤, 宋景凌, 魏光升, 郭宇峰, 謝鑫, 劉全勝. 電弧爐煉鋼爐渣成分實時預報模型[J]. 工程科學學報, 2020, 42(S): 39-46. doi: 10.13374/j.issn2095-9389.2020.04.05.s12
引用本文: 楊凌志, 薛波濤, 宋景凌, 魏光升, 郭宇峰, 謝鑫, 劉全勝. 電弧爐煉鋼爐渣成分實時預報模型[J]. 工程科學學報, 2020, 42(S): 39-46. doi: 10.13374/j.issn2095-9389.2020.04.05.s12
YANG Ling-zhi, XUE Bo-tao, SONG Jing-ling, WEI Guang-sheng, GUO Yu-feng, XIE Xin, LIU Quan-sheng. Real-time prediction model of slag composition in electric arc furnace steelmaking[J]. Chinese Journal of Engineering, 2020, 42(S): 39-46. doi: 10.13374/j.issn2095-9389.2020.04.05.s12
Citation: YANG Ling-zhi, XUE Bo-tao, SONG Jing-ling, WEI Guang-sheng, GUO Yu-feng, XIE Xin, LIU Quan-sheng. Real-time prediction model of slag composition in electric arc furnace steelmaking[J]. Chinese Journal of Engineering, 2020, 42(S): 39-46. doi: 10.13374/j.issn2095-9389.2020.04.05.s12

電弧爐煉鋼爐渣成分實時預報模型

doi: 10.13374/j.issn2095-9389.2020.04.05.s12
基金項目: 國家自然科學基金資助項目(51804345);中國博士后科學基金資助項目(2020T130053,2019M660459)
詳細信息
    通訊作者:

    E-mail:weiguangsheng@ustb.edu.cn

  • 中圖分類號: TG741.5

Real-time prediction model of slag composition in electric arc furnace steelmaking

More Information
  • 摘要: 為了實現冶煉過程中對爐渣成分的實時預測,給電弧爐煉鋼過程中加料等工藝操作提供幫助,對影響爐內爐渣成分的因素(爐內反應、加料與流渣)進行了研究,構建了電弧爐煉鋼爐渣成分實時預報模型。結果顯示,該模型能夠實時預測爐內爐渣質量和成分變化,預報爐內鐵元素氧化狀況,可為冶煉過程中添加輔料與流渣等工藝操作提供指導作用。通過與現場爐渣取樣檢測結果進行對比,得到爐渣中CaO、SiO2和FeO實測成分與模型預測成分的平均相對誤差分別為12.66%、11.17%和19.16%。

     

  • 圖  1  鋼液中元素選擇性氧化機理

    Figure  1.  Selective oxidation mechanism of elements in the liquid steels

    圖  2  選擇性氧化模型計算流程

    Figure  2.  Calculation process of the selective oxidation model

    圖  3  爐渣溢出過程拍攝示意圖

    Figure  3.  Shooting schematic diagram of the slag overflowing

    圖  4  電弧爐煉鋼過程輔料加入示意圖

    Figure  4.  Schematic diagram of the auxiliary material charging in EAF steelmaking process

    圖  5  電弧爐煉鋼爐渣成分實時預報模型理論結構圖

    Figure  5.  Theoretical structure diagram of the real-time prediction model of slag composition in EAF steelmaking

    圖  6  模型計算流程圖

    Figure  6.  Flow chart of the model calculation

    圖  7  模型計算界面

    Figure  7.  Calculation interface of model

    圖  8  模型預測爐渣組元質量分數

    Figure  8.  Prediction results of the slag mass fraction by model

    圖  9  模型預測爐渣各組元質量

    Figure  9.  Prediction results of the slag mass by model

    表  1  模型預測與實驗結果相對誤差

    Table  1.   Relative error between the model prediction and the experimental results

    TimeTypeCaOSiO2FeO conversion
    Mass fraction / %Error, δ/ %Mass fraction / %Error, δ/ %Mass fraction / %Error, δ/ %
    EarlyDetection26.165.9617.193.4047.533.50
    Prediction27.7216.6145.83
    MiddleDetection36.784.0011.1525.5039.280.50
    Prediction38.1413.9939.07
    LaterDetection31.6619.006.8516.1052.125.20
    Prediction37.697.9549.36
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10

    朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10
    [2] Song W L. Electric Arc Furnace Steelmaking. Beijing: Metallurgical Industry Press, 1996

    宋文林. 電弧爐煉鋼. 北京: 冶金工業出版社, 1996
    [3] Cavaliere P. Electric Arc Furnace: Most Efficient Technologies for Greenhouse Emissions Abatement [Dissertation]. Lecce: University of Salento, 2019
    [4] Yang L Z. The Research of Endpoint Composition Control in EAF-LF Steelmaking Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    楊凌志. EAF-LF煉鋼工序終點成分控制研究[學位論文]. 北京: 北京科技大學, 2015
    [5] Bird S C, Drizo A. EAF steel slag filters for phosphorus removal from milk parlor effluent: the effects of solids loading, alternate feeding regimes and in-series design. Water, 2010, 2(3): 484 doi: 10.3390/w2030484
    [6] Dehkordi B, Moallem M, Parsapour A. Predicting foaming slag quality in electric arc furnace using power quality indices and fuzzy method. IEEE Trans Instrum Meas, 2011, 60(12): 3845 doi: 10.1109/TIM.2010.2085190
    [7] Guo J L. Fundamental Study on Recycled Use of LF Slags [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2009

    郭家林. LF爐渣返回應用的基礎研究[學位論文]. 西安: 西安建筑科技大學, 2009
    [8] Yang L Z, Guo Y F, Chen F, et al. Alloy yield prediction model based on the data analysis in EAF steelmaking process // 8th International Symposium on High-Temperature Metallurgical Processing. San Diego: Springer International Publishing, 2017: 79
    [9] Yang L Z, Zhu R. The research status quo and prospect of composition control model in EAF steelmaking. Ind Heat, 2016, 45(1): 26 doi: 10.3969/j.issn.1002-1639.2016.01.007

    楊凌志, 朱榮. 電弧爐煉鋼成分控制模型研究現狀與展望. 工業加熱, 2016, 45(1):26 doi: 10.3969/j.issn.1002-1639.2016.01.007
    [10] Sadeghian A, Lavers J D. Dynamic reconstruction of nonlinear v?i characteristic in electric arc furnaces using adaptive neuro-fuzzy rule-based networks. Appl Soft Comput, 2011, 11(1): 1448 doi: 10.1016/j.asoc.2010.04.016
    [11] Wang L J, Zhang J, Niu S T, et al. The dephosphorization foamy slags in electric arc furnace. Eng Chem Metall, 1994, 15(4): 355

    王力軍, 張鑒, 牛四通, 等. 電弧爐煉鋼中的脫磷泡沫渣. 化工冶金, 1994, 15(4):355
    [12] Li J S, Liu H W, Me H Y, et al. Practice of refining steel grade SPHD by converter process // Proceedings of 5th Baosteel BAC Annual Meeting. Shanghai, 2013: 1

    李建生, 劉宏偉, 么洪勇, 等. 轉爐冶煉SPHD鋼生產實踐 // 第五屆寶鋼學術年會論文集. 上海, 2013: 1
    [13] Fan J, Wang Y J, Li J W, et al. Development of prediction model of slag component in the course of converter working base on the craft of less-slag-smelting // Proceedings of the 8th National Steelmaking Conference. Xi'an, 2014: 1

    范佳, 王彥杰, 李建文, 等. 基于少渣冶煉工藝下的轉爐冶煉過程爐渣成分預報模型的開發 // 第十八屆(2014年)全國煉鋼學術會議論文集. 西安, 2014: 1
    [14] Yu R H, Chen X L, Ni Z B, et al. Application of LIBS automatic spectral peak search to online slag analysis. J Hefei Univ Technol Nat Sci, 2014(12): 1474

    余嶸華, 陳興龍, 倪志波, 等. LIBS譜線自動尋峰在爐渣成分在線分析中的應用. 合肥工業大學學報: 自然科學版, 2014(12):1474
    [15] Chen X L, Dong F Z, Wang J G, et al. Slag quantitative analysis based on PLS model by laser-induced breakdown spectroscopy. Acta Photon Sin, 2014, 43(9): 120

    陳興龍, 董鳳忠, 王靜鴿, 等. PLS算法在激光誘導擊穿光譜分析爐渣成分中的應用. 光子學報, 2014, 43(9):120
    [16] Wang B H, Yang L Z, Guo Y F, et al. Present situation composition forecast in EAF steelmaking and influence of molten bath stirring. China Metall, 2017, 27(12): 1

    王柏惠, 楊凌志, 郭宇峰, 等. 電弧爐煉鋼成分預報現狀與熔池攪拌對其影響. 中國冶金, 2017, 27(12):1
    [17] Guo Y F, Cao J R, Guo Q Y. Research on moving object detection based on improved background subtraction method of EmguCV. J Zhongyuan Univ Technol, 2017, 28(4): 86 doi: 10.3969/j.issn.1671-6906.2017.04.016

    郭永鋒, 曹竟如, 郭清宇. 基于EmguCV的改進背景減除法運動目標檢測方法研究. 中原工學院學報, 2017, 28(4):86 doi: 10.3969/j.issn.1671-6906.2017.04.016
    [18] Xue Y C, Dai W R, Lu H H, et al. Design of the webcam intelligent searching system based on EmguCV. J Changzhou Inst Technol, 2013, 26(3-4): 9

    薛宇城, 戴未然, 盧捍華, 等. 基于EmguCV的網絡攝像智能搜索系統的設計. 常州工學院學報, 2013, 26(3-4):9
    [19] Wagner B. Effective C# - Covers C# 4.0: 50 Specific Ways to Improve Your C#. Beijing: China Machine Press, 2006
    [20] Moore A. Visual Studio 2010 All-in-One For Dummies. Indianapolis: Wiley Publishing Inc., 2010
    [21] Yang L Z, Zhu R, Ning J C, et al. Research on the molten steel components and temperature forecast model for EAF steelmaking plant. Ind Heat, 2013, 42(1): 15 doi: 10.3969/j.issn.1002-1639.2013.01.005

    楊凌志, 朱榮, 寧建成, 等. 電弧爐煉鋼廠鋼水成分與溫度預報模型的研究. 工業加熱, 2013, 42(1):15 doi: 10.3969/j.issn.1002-1639.2013.01.005
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  932
  • HTML全文瀏覽量:  643
  • PDF下載量:  68
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-05
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回