Influence of inclusions with Mg deoxidation on the microstructure in the heat-affected zone of steel plates after high-heat-input welding
-
摘要: 研究了夾雜物對Mg脫氧鋼焊接熱影響區(HAZ)組織及沖擊韌性的影響。研究結果表明,MgO–MnS復合夾雜物形貌隨著Al的添加發生顯著變化。當Al質量分數為0.001%時,由中心單一MgO粒子與外圍MnS相組成;當Al質量分數為0.020%時,其形貌為夾雜物中多個細小的MgO粒子嵌入MnS相中。前者可誘發晶內針狀鐵素體(IAF)形核,而后者不具備該能力,故HAZ中主要晶內組織分別為塑性IAF、脆性側板條鐵素體。因此,未添加Al鋼的400 kJ·cm?1大線能量焊接HAZ韌性優于添加Al鋼。Abstract: The effects of inclusions on the microstructure and toughness of the heat-affected zone (HAZ) in steel plates with Mg deoxidation after high-heat-input welding were investigated in the present study. The results indicate that the morphologies of MgO–MnS complex inclusions in steel are changed obviously with the addition of Al. When containing 0.001% Al (mass fraction), the inclusions consist of a central single MgO particle and an outside MnS phase. When containing 0.020% Al, they are comprised of several small MgO particles entrapped by the MnS phase. Because the former inclusion can nucleate intragranular acicular ferrites (IAFs) and the latter is non-nucleant, the main intragranular microstructures in the HAZs are ductile IAFs and brittle ferrite side plates, respectively. Therefore, the HAZ toughness of the steel plate without Al addition after a high-heat-input welding of 400 kJ·cm?1 is significantly better than that of the steel plate with Al addition.
-
Key words:
- Mg deoxidation /
- inclusions /
- Al /
- high-heat-input welding /
- heat-affected zone /
- toughness
-
表 1 鋼樣化學成分(質量分數)
Table 1. Measured chemical compositions of steel samples
% Steels C Si Mn P S Ti Mg Al O N 3Mg1Al 0.082 0.22 1.56 0.006 0.005 0.011 0.0027 0.001 0.0011 0.0032 3Mg20Al 0.082 0.22 1.56 0.006 0.004 0.011 0.0027 0.020 0.0007 0.0032 www.77susu.com -
參考文獻
[1] Pervushin G V, Suito H. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe?10mass%Ni alloy. ISIJ Int, 2001, 41(7): 748 doi: 10.2355/isijinternational.41.748 [2] Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metall Mater Trans B, 2001, 32(1): 79 doi: 10.1007/s11663-001-0010-1 [3] Park S C, Jung I H, Oh K S, et al. Effect of Al on the evolution of non-metallic inclusions in the Mn?Si?Ti?Mg deoxidized steel during solidification: Experiments and thermodynamic calculations. ISIJ Int, 2004, 44(6): 1016 doi: 10.2355/isijinternational.44.1016 [4] Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe?10mass%Ni alloy. ISIJ Int, 2006, 46(1): 14 doi: 10.2355/isijinternational.46.14 [5] Ohta H, Suito H. Effects of dissolved oxygen and size distribution on particle coarsening of deoxidation product. ISIJ Int, 2006, 46(1): 42 doi: 10.2355/isijinternational.46.42 [6] Takamura J, Mizoguchi S. Metallurgy of oxides in steels: Ⅰ. Roles of oxides in steels performance // The Sixth International Iron and Steel Congress. Nagaya, 1990: 591 [7] Hu Z Y, Yang C W, Jiang M, et al. In situ observation of intragranular acicular ferrite nucleated on complex titanium-containing inclusions in titanium deoxidized steel. Acta Metall Sin, 2011, 47(8): 971胡志勇, 楊成威, 姜敏, 等. Ti脫氧鋼含Ti復合夾雜物誘導晶內針狀鐵素體的原位觀察. 金屬學報, 2011, 47(8):971 [8] Song M M, Song B, Hu C L, et al. Effect of Ti?Mg complex deoxidation on the microstructure and impact properties of HAZ in steel. Chin J Eng, 2015, 37(7): 883宋明明, 宋波, 胡春林, 等. Ti?Mg復合脫氧對鋼熱影響區組織和沖擊性能的影響. 工程科學學報, 2015, 37(7):883 [9] Zheng W, Wu Z H, Li G Q, et al. Effects of Ti?Mg complex deoxidation and sulfur content on the characteristics of inclusions and the precipitation behavior of MnS. Chin J Eng, 2015, 37(3): 292鄭萬, 吳振華, 李光強, 等. Ti?Mg復合脫氧和硫含量對鋼中夾雜物特征及MnS析出行為的影響. 工程科學學報, 2015, 37(3):292 [10] Wan X L, Li G Q, Wu K M. In-situ observations of grain refinement by TiN particles in the simulated coarse-grained heat-affected zone of a high-strength low-alloy steel. Chin J Eng, 2016, 38(3): 371萬響亮, 李光強, 吳開明. 原位觀察TiN粒子對低合金高強度鋼模擬焊接熱影響區粗晶區晶粒細化作用. 工程科學學報, 2016, 38(3):371 [11] Xu L Y, Yang J. Effects of Mg content on characteristics of nanoscale TiN particles and toughness of heat-affected zones of steel plates after high-heat-input welding. Metall Mater Trans A, 2020, 51(9): 4540 doi: 10.1007/s11661-020-05864-4 [12] Yang J, Xu L Y, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation. Steel Res Int, 2015, 86(6): 619 doi: 10.1002/srin.201400313 [13] Li X B, Min Y, Yu Z, et al. Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel. J Iron Steel Res Int, 2016, 23(5): 415 doi: 10.1016/S1006-706X(16)30066-8 [14] Xu L Y, Yang J, Wang R Z, et al. Effect of welding heat input on microstructure and toughness of heated-affected zone in steel plate with Mg deoxidation. Steel Res Int, 2017, 88(12): 1700157 doi: 10.1002/srin.201700157 [15] Zhang Y H, Yang J, Xu L Y, et al. The effect of Ca content on the formation behavior of inclusions in the heat affected zone of thick high-strength low-alloy steel plates after large heat input weldings. Metals, 2019, 9(12): 1328 doi: 10.3390/met9121328 [16] Sarma D S, Karasev A V, J?nsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int, 2009, 49(7): 1063 doi: 10.2355/isijinternational.49.1063 [17] Lee J L, Pan Y T. Effect of sulfur content on the microstructure and toughness of simulated heat-affected zone in Ti-killed steels. Metall Trans A, 1993, 24(6): 1399 doi: 10.1007/BF02668208 [18] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406 [19] Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int, 2000, 40(12): 1260 doi: 10.2355/isijinternational.40.1260 [20] Kang Y B, Lee H G. Thermodynamic analysis of Mn-depleted near Ti oxide inclusions for intragranular nucleation of ferrite in steel. ISIJ Int, 2010, 50(4): 501 doi: 10.2355/isijinternational.50.501 [21] Zhang C J, Gao L N, Zhu L G. Effect of inclusion size and type on the nucleation of acicular ferrite in high strength ship plate steel. ISIJ Int, 2018, 58(5): 965 doi: 10.2355/isijinternational.ISIJINT-2017-696 [22] Xu L Y, Yang J, Wang R Z, et al. Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding. Metall Mater Trans A, 2016, 47(7): 3354 doi: 10.1007/s11661-016-3535-2 [23] Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y [24] Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti?Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534 [25] Chai F, Yang C F, Hang S, et al. Effect of magnesium on inclusion formation in Ti-killed steels and microstructural evolution in welding induced coarse-grained heat affected zone. J Iron Steel Res Int, 2009, 16(1): 69 doi: 10.1016/S1006-706X(09)60013-3 -