<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Mg脫氧夾雜物對大線能量焊接HAZ組織的影響

徐龍云 楊健 王睿之

徐龍云, 楊健, 王睿之. Mg脫氧夾雜物對大線能量焊接HAZ組織的影響[J]. 工程科學學報, 2020, 42(S): 9-13. doi: 10.13374/j.issn2095-9389.2020.04.05.s10
引用本文: 徐龍云, 楊健, 王睿之. Mg脫氧夾雜物對大線能量焊接HAZ組織的影響[J]. 工程科學學報, 2020, 42(S): 9-13. doi: 10.13374/j.issn2095-9389.2020.04.05.s10
XU Long-yun, YANG Jian, WANG Rui-zhi. Influence of inclusions with Mg deoxidation on the microstructure in the heat-affected zone of steel plates after high-heat-input welding[J]. Chinese Journal of Engineering, 2020, 42(S): 9-13. doi: 10.13374/j.issn2095-9389.2020.04.05.s10
Citation: XU Long-yun, YANG Jian, WANG Rui-zhi. Influence of inclusions with Mg deoxidation on the microstructure in the heat-affected zone of steel plates after high-heat-input welding[J]. Chinese Journal of Engineering, 2020, 42(S): 9-13. doi: 10.13374/j.issn2095-9389.2020.04.05.s10

Mg脫氧夾雜物對大線能量焊接HAZ組織的影響

doi: 10.13374/j.issn2095-9389.2020.04.05.s10
基金項目: 國家自然科學基金資助項目(U1960202)
詳細信息
    通訊作者:

    E-mail:yang_jian@t.shu.edu.cn

  • 中圖分類號: TF76

Influence of inclusions with Mg deoxidation on the microstructure in the heat-affected zone of steel plates after high-heat-input welding

More Information
  • 摘要: 研究了夾雜物對Mg脫氧鋼焊接熱影響區(HAZ)組織及沖擊韌性的影響。研究結果表明,MgO–MnS復合夾雜物形貌隨著Al的添加發生顯著變化。當Al質量分數為0.001%時,由中心單一MgO粒子與外圍MnS相組成;當Al質量分數為0.020%時,其形貌為夾雜物中多個細小的MgO粒子嵌入MnS相中。前者可誘發晶內針狀鐵素體(IAF)形核,而后者不具備該能力,故HAZ中主要晶內組織分別為塑性IAF、脆性側板條鐵素體。因此,未添加Al鋼的400 kJ·cm?1大線能量焊接HAZ韌性優于添加Al鋼。

     

  • 圖  1  典型MgO?MnS夾雜物形貌和成分。(a)3Mg1Al;(b)3Mg20Al

    Figure  1.  Morphologies and compositions of typical MgO–MnS inclusions: (a) 3Mg1Al; (b) 3Mg20Al

    圖  2  鋼中夾雜物尺寸分布

    Figure  2.  Size distribution of the inclusions in experimental steels

    圖  3  HAZ組織中夾雜物形貌及掃描電鏡面掃描圖像。(a~c)3Mg1Al;(d~f)3Mg20Al

    Figure  3.  Morphologies and SEM mapping images of the inclusions in the HAZ microstructures for experimental steels: (a?c) 3Mg1Al; (d?f) 3Mg20Al

    表  1  鋼樣化學成分(質量分數)

    Table  1.   Measured chemical compositions of steel samples %

    SteelsCSiMnPSTiMgAlON
    3Mg1Al0.0820.221.560.0060.0050.0110.00270.0010.00110.0032
    3Mg20Al0.0820.221.560.0060.0040.0110.00270.0200.00070.0032
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Pervushin G V, Suito H. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe?10mass%Ni alloy. ISIJ Int, 2001, 41(7): 748 doi: 10.2355/isijinternational.41.748
    [2] Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metall Mater Trans B, 2001, 32(1): 79 doi: 10.1007/s11663-001-0010-1
    [3] Park S C, Jung I H, Oh K S, et al. Effect of Al on the evolution of non-metallic inclusions in the Mn?Si?Ti?Mg deoxidized steel during solidification: Experiments and thermodynamic calculations. ISIJ Int, 2004, 44(6): 1016 doi: 10.2355/isijinternational.44.1016
    [4] Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe?10mass%Ni alloy. ISIJ Int, 2006, 46(1): 14 doi: 10.2355/isijinternational.46.14
    [5] Ohta H, Suito H. Effects of dissolved oxygen and size distribution on particle coarsening of deoxidation product. ISIJ Int, 2006, 46(1): 42 doi: 10.2355/isijinternational.46.42
    [6] Takamura J, Mizoguchi S. Metallurgy of oxides in steels: Ⅰ. Roles of oxides in steels performance // The Sixth International Iron and Steel Congress. Nagaya, 1990: 591
    [7] Hu Z Y, Yang C W, Jiang M, et al. In situ observation of intragranular acicular ferrite nucleated on complex titanium-containing inclusions in titanium deoxidized steel. Acta Metall Sin, 2011, 47(8): 971

    胡志勇, 楊成威, 姜敏, 等. Ti脫氧鋼含Ti復合夾雜物誘導晶內針狀鐵素體的原位觀察. 金屬學報, 2011, 47(8):971
    [8] Song M M, Song B, Hu C L, et al. Effect of Ti?Mg complex deoxidation on the microstructure and impact properties of HAZ in steel. Chin J Eng, 2015, 37(7): 883

    宋明明, 宋波, 胡春林, 等. Ti?Mg復合脫氧對鋼熱影響區組織和沖擊性能的影響. 工程科學學報, 2015, 37(7):883
    [9] Zheng W, Wu Z H, Li G Q, et al. Effects of Ti?Mg complex deoxidation and sulfur content on the characteristics of inclusions and the precipitation behavior of MnS. Chin J Eng, 2015, 37(3): 292

    鄭萬, 吳振華, 李光強, 等. Ti?Mg復合脫氧和硫含量對鋼中夾雜物特征及MnS析出行為的影響. 工程科學學報, 2015, 37(3):292
    [10] Wan X L, Li G Q, Wu K M. In-situ observations of grain refinement by TiN particles in the simulated coarse-grained heat-affected zone of a high-strength low-alloy steel. Chin J Eng, 2016, 38(3): 371

    萬響亮, 李光強, 吳開明. 原位觀察TiN粒子對低合金高強度鋼模擬焊接熱影響區粗晶區晶粒細化作用. 工程科學學報, 2016, 38(3):371
    [11] Xu L Y, Yang J. Effects of Mg content on characteristics of nanoscale TiN particles and toughness of heat-affected zones of steel plates after high-heat-input welding. Metall Mater Trans A, 2020, 51(9): 4540 doi: 10.1007/s11661-020-05864-4
    [12] Yang J, Xu L Y, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation. Steel Res Int, 2015, 86(6): 619 doi: 10.1002/srin.201400313
    [13] Li X B, Min Y, Yu Z, et al. Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel. J Iron Steel Res Int, 2016, 23(5): 415 doi: 10.1016/S1006-706X(16)30066-8
    [14] Xu L Y, Yang J, Wang R Z, et al. Effect of welding heat input on microstructure and toughness of heated-affected zone in steel plate with Mg deoxidation. Steel Res Int, 2017, 88(12): 1700157 doi: 10.1002/srin.201700157
    [15] Zhang Y H, Yang J, Xu L Y, et al. The effect of Ca content on the formation behavior of inclusions in the heat affected zone of thick high-strength low-alloy steel plates after large heat input weldings. Metals, 2019, 9(12): 1328 doi: 10.3390/met9121328
    [16] Sarma D S, Karasev A V, J?nsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int, 2009, 49(7): 1063 doi: 10.2355/isijinternational.49.1063
    [17] Lee J L, Pan Y T. Effect of sulfur content on the microstructure and toughness of simulated heat-affected zone in Ti-killed steels. Metall Trans A, 1993, 24(6): 1399 doi: 10.1007/BF02668208
    [18] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
    [19] Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int, 2000, 40(12): 1260 doi: 10.2355/isijinternational.40.1260
    [20] Kang Y B, Lee H G. Thermodynamic analysis of Mn-depleted near Ti oxide inclusions for intragranular nucleation of ferrite in steel. ISIJ Int, 2010, 50(4): 501 doi: 10.2355/isijinternational.50.501
    [21] Zhang C J, Gao L N, Zhu L G. Effect of inclusion size and type on the nucleation of acicular ferrite in high strength ship plate steel. ISIJ Int, 2018, 58(5): 965 doi: 10.2355/isijinternational.ISIJINT-2017-696
    [22] Xu L Y, Yang J, Wang R Z, et al. Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding. Metall Mater Trans A, 2016, 47(7): 3354 doi: 10.1007/s11661-016-3535-2
    [23] Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y
    [24] Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti?Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534
    [25] Chai F, Yang C F, Hang S, et al. Effect of magnesium on inclusion formation in Ti-killed steels and microstructural evolution in welding induced coarse-grained heat affected zone. J Iron Steel Res Int, 2009, 16(1): 69 doi: 10.1016/S1006-706X(09)60013-3
  • 加載中
圖(3) / 表(1)
計量
  • 文章訪問數:  778
  • HTML全文瀏覽量:  562
  • PDF下載量:  25
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-05
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回