Impact characteristics of submerged gas–solid injection in the manufacturing process of steel
-
摘要: 電弧爐煉鋼以廢鋼為基本原料,熔清后磷含量波動大,且受爐型結構限制,反應動力學條件差,深脫磷困難;全廢鋼冶煉熔清碳含量低,熔池內C–O反應缺乏,氣泡產生數量少;且吹氧強化攪拌造成渣中FeO含量高、鋼液易過氧化。電弧爐熔池內氣–固噴吹冶煉新工藝,通過向熔池內部直接噴射石灰粉或碳粉,有效解決上述問題。本文通過數值模擬和水力學模擬實驗研究了金屬熔池內埋入式氣體噴吹和氣–固噴吹的沖擊特征規律。熔池內射流水平和豎直沖擊深度隨氣體噴吹流量增加而增加,而當氣體噴吹流量一定時,隨著噴槍安裝角度的增大,熔池內射流豎直沖擊深度增加,而水平沖擊深度減少。同時發現,粉劑顆粒提高了氣體射流的沖擊動能,增加了氣體射流的沖擊穿透深度。Abstract: Scrap is used as a basic raw material in an electric arc furnace (EAF) steelmaking process. During the process of melting, the phosphorus content fluctuates greatly, which is affected by various parameters such as the furnace structure and poor reaction dynamic conditions. Moreover, dephosphorization is very difficult to achieve. It is known that the carbon content of all melting scraps is low, C–O reaction in the molten pool is not sufficient, and number of bubbles is small; the FeO content in slag is high and molten steel is very easily oxidized by blowing oxygen and effective stirring. This study proposed a new process of submerged gas–solid injection and implemented it in EAF steelmaking, which effectively solved the aforementioned problems by delivering lime powder or carbon powder directly into the molten pool. In this study, the impact characteristics of submerged gas–solid injection in molten bath were investigated using numerical simulations and water model experiments. It is observed that when the gas flow rate was increased, the horizontal and vertical penetration distances were also increased. Meanwhile, when the installed angle of the nozzle was increased, the horizontal penetration distance was also increased, whereas, there was a decrease in vertical penetration distance. Further, the results obtained also show that both the kinetic energy of gas jet and impact penetration depth are increased by the proposed powder injection process.
-
表 1 各相物理屬性參數
Table 1. Physical property parameters of each phase
Property parameters Density/(kg·m?3) Viscosity/(kg·m?1·s?1) Thermal conductivity/(W·m?1·K?1) Heat capacity/(J·kg?1·K?1) Temperature/K Molten steel 7200 0.0065 15 670 1873 Oxygen Ideal gas 1.919×10?5 0.0246 Piecewise-polynomial 300 表 2 埋入式氣體噴吹數值模擬方案
Table 2. Numerical simulation scheme of submerged gas injection
Serial number Installation angle/(°) Gas flow rate/(m3·h?1) 1 0 200 2 0 400 3 0 600 4 5 200 5 5 400 6 5 600 7 10 200 8 10 400 9 10 600 10 15 200 11 15 400 12 15 600 表 3 埋入式氣–固噴吹數值模擬方案
Table 3. Numerical simulation scheme of submerged gas–solid injection
Serial number Installation angle/(°) Gas flow rate/(m3·h?1) Powder injection rate/(kg·min?1) 1 10 200 10 2 10 400 10 3 10 600 10 表 4 埋入式氣體噴吹水模型實驗方案
Table 4. Water model experiments scheme of submerged gas injection
Variable Installation angle/(°) Gas flow rate/(m3·h?1) Parameter 0, 5, 10, 15 3, 5, 8, 10, 12, 15 表 5 埋入式氣–固噴吹水模型實驗方案
Table 5. Water model experiments scheme of submerged gas–solid injection
Variable Installation angle/(°) Gas flow rate/(m3·h?1) Installation depth/mm Powder injection rate/(g·min?1) Parameter 0, 10 10 200 20, 40, 60 www.77susu.com -
參考文獻
[1] Ikei Mori. Electric Arc Furnace Steelmaking. Translated by Zhu G L. Beijing: Metallurgical Industry Press, 2006森井廉. 電弧爐煉鋼法. 朱果靈, 譯. 北京: 冶金工業出版社, 2006 [2] Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10 [3] He C L, Zhu R, Dong K, et al. Decarburization model of EAF steelmaking based on fume composition detecting. J Univ Sci Technol Beijing, 2010, 32(12): 1537何春來, 朱榮, 董凱, 等. 基于煙氣成分分析的電弧爐煉鋼脫碳模型. 北京科技大學學報, 2010, 32(12):1537 [4] Sandberg E, Lennox B, Undvall P. Scrap management by statistical evaluation of EAF process data. Control Eng Pract, 2007, 15(9): 1063 doi: 10.1016/j.conengprac.2007.01.001 [5] Zhang J L, Liu Y Q, Zhang Z W, et al. A new high quality EAF charge. Int J Miner Metall Mater, 2001, 8(1): 20 [6] Dankwah J R, Koshy P, Sahajwalla V. Reduction of FeO in EAF steelmaking slag by blends of metallurgical coke and end-of-life polyethylene terephthalate. Ironmaking Steelmaking, 2014, 41(6): 401 doi: 10.1179/1743281213Y.0000000125 [7] Dong K, Zhu R, Liu W J, et al. Influencing factors of EAF off-gas composition. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 77董凱, 朱榮, 劉文娟, 等. 電弧爐爐氣成分的影響因素. 北京科技大學學報, 2011, 33(增刊1): 77 [8] Wei G S, Zhu R, Wu X T, et al. Technological innovations of carbon dioxide injection in EAF-LF steelmaking. JOM, 2018, 70(6): 969 doi: 10.1007/s11837-018-2814-3 [9] Zhu R, Hu S Y, Dong K, et al. A kind of Bottom Blowing Element for Oxygen Supply and Powder Injection at the Bottom of Converter: China Patent, CN201610620240.0. 2017-02-08朱榮, 胡紹巖, 董凱, 等. 一種用于轉爐底部供氧噴粉的底吹元件: 中國專利, CN201610620240.0. 2017-02-08 [10] Yan L Y. Technology characteritics of contemporary ultra-high-power electric arc furnace. Spec Steel, 2001, 22(5): 1 doi: 10.3969/j.issn.1003-8620.2001.05.001閻立懿. 現代超高功率電弧爐的技術特征. 特殊鋼, 2001, 22(5):1 doi: 10.3969/j.issn.1003-8620.2001.05.001 [11] Dong K, Wei G S, Chang J, et al, Fluid flow characteristics of molten bath with bottom-blowing in EAF steelmaking, Chin J Eng, 2018, 40(Suppl 1): 93董凱, 魏光升, 常軍, 等. 底吹條件下電弧爐煉鋼熔池的流體流動特性. 工程科學學報, 2018, 40(增刊1): 93 [12] Ma G H, Zhu R, Liu R Z, et al. Development and application of electric arc furnace composite blowing technology. Ind Heat, 2015, 44(2): 1 doi: 10.3969/j.issn.1002-1639.2015.02.001馬國宏, 朱榮, 劉潤藻, 等. 電弧爐煉鋼復合吹煉技術的發展及應用. 工業加熱, 2015, 44(2):1 doi: 10.3969/j.issn.1002-1639.2015.02.001 [13] He Q, Guo Z. Technical development of increasing oxygen used in EAF process. J Iron Steel Res, 2004, 16(5): 1 doi: 10.3321/j.issn:1001-0963.2004.05.001賀慶, 郭征. 電弧爐煉鋼強化用氧技術的進展. 鋼鐵研究學報, 2004, 16(5):1 doi: 10.3321/j.issn:1001-0963.2004.05.001 [14] Alam M, Irons G, Brooks G, et al. Inclined jetting and splashing in electric arc furnace steelmaking. ISIJ Int, 2011, 51(9): 1439 doi: 10.2355/isijinternational.51.1439 [15] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39(1): 201 doi: 10.1016/0021-9991(81)90145-5 [16] Mu Z W, Zhang Z Y, Zhao T. Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng, 2012, 28: 808 doi: 10.1016/j.proeng.2012.01.814 [17] Kleefsman K M T, Fekken G, Veldman A E P, et al. A Volume-of-Fluid based simulation method for wave impact problems. J Comput Phys, 2005, 206(1): 363 doi: 10.1016/j.jcp.2004.12.007 [18] Wijayanta A T, Alam M S, Nakaso K, et al. Combustibility of biochar injected into the raceway of a blast furnace. Fuel Process Technol, 2014, 117: 53 doi: 10.1016/j.fuproc.2013.01.012 [19] Peters B. Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles. Combust Flame, 2002, 131(1-2): 132 doi: 10.1016/S0010-2180(02)00393-0 [20] Li Q, Li M M, Kuang S B, et al. Numerical simulation of the interaction between supersonic oxygen jets and molten slag–metal bath in steelmaking BOF process. Metall Mater Trans B, 2015, 46(3): 1494 doi: 10.1007/s11663-015-0292-3 [21] Lv M, Zhu R, Guo Y G, et al. Simulation of flow fluid in the BOF steelmaking process. Metall Mater Trans B, 2013, 44(6): 1560 doi: 10.1007/s11663-013-9935-4 [22] Li M M, Li Q, Kuang S B, et al. Transferring characteristics of momentum/energy during oxygen jetting into the molten bath in BOFs: a computational exploration. Steel Res Int, 2016, 87(3): 288 doi: 10.1002/srin.201500034 [23] Feng Y Q, Yu A B. Assessment of model formulations in the discrete particle simulation of gas-solid flow. Ind Eng Chem Res, 2004, 43(26): 8378 doi: 10.1021/ie049387v [24] Miyata M, Higuchi Y. Fluid dynamics analysis of gas jet with particles. ISIJ Int, 2017, 57(10): 1742 doi: 10.2355/isijinternational.ISIJINT-2017-107 -