<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬熔池埋入式氣–固噴吹沖擊的特征規律

魏光升 朱榮 田博涵 董凱 楊凌志

魏光升, 朱榮, 田博涵, 董凱, 楊凌志. 金屬熔池埋入式氣–固噴吹沖擊的特征規律[J]. 工程科學學報, 2020, 42(S): 47-53. doi: 10.13374/j.issn2095-9389.2020.04.05.s03
引用本文: 魏光升, 朱榮, 田博涵, 董凱, 楊凌志. 金屬熔池埋入式氣–固噴吹沖擊的特征規律[J]. 工程科學學報, 2020, 42(S): 47-53. doi: 10.13374/j.issn2095-9389.2020.04.05.s03
WEI Guang-sheng, ZHU Rong, TIAN Bo-han, DONG Kai, YANG Ling-zhi. Impact characteristics of submerged gas–solid injection in the manufacturing process of steel[J]. Chinese Journal of Engineering, 2020, 42(S): 47-53. doi: 10.13374/j.issn2095-9389.2020.04.05.s03
Citation: WEI Guang-sheng, ZHU Rong, TIAN Bo-han, DONG Kai, YANG Ling-zhi. Impact characteristics of submerged gas–solid injection in the manufacturing process of steel[J]. Chinese Journal of Engineering, 2020, 42(S): 47-53. doi: 10.13374/j.issn2095-9389.2020.04.05.s03

金屬熔池埋入式氣–固噴吹沖擊的特征規律

doi: 10.13374/j.issn2095-9389.2020.04.05.s03
基金項目: 國家自然科學基金資助項目(51804345);中國博士后科學基金資助項目(2020T130053,2019M660459);中央高校基本科研業務費資助項目(FRF-TP-19-031A1)
詳細信息
    通訊作者:

    E-mail:yanglingzhi@163.com

  • 中圖分類號: TF743

Impact characteristics of submerged gas–solid injection in the manufacturing process of steel

More Information
  • 摘要: 電弧爐煉鋼以廢鋼為基本原料,熔清后磷含量波動大,且受爐型結構限制,反應動力學條件差,深脫磷困難;全廢鋼冶煉熔清碳含量低,熔池內C–O反應缺乏,氣泡產生數量少;且吹氧強化攪拌造成渣中FeO含量高、鋼液易過氧化。電弧爐熔池內氣–固噴吹冶煉新工藝,通過向熔池內部直接噴射石灰粉或碳粉,有效解決上述問題。本文通過數值模擬和水力學模擬實驗研究了金屬熔池內埋入式氣體噴吹和氣–固噴吹的沖擊特征規律。熔池內射流水平和豎直沖擊深度隨氣體噴吹流量增加而增加,而當氣體噴吹流量一定時,隨著噴槍安裝角度的增大,熔池內射流豎直沖擊深度增加,而水平沖擊深度減少。同時發現,粉劑顆粒提高了氣體射流的沖擊動能,增加了氣體射流的沖擊穿透深度。

     

  • 圖  1  幾何計算域及網格劃分

    Figure  1.  Geometric calculation domain and mesh generation

    圖  2  水模型實驗平臺

    Figure  2.  Water model experiment platform

    圖  3  埋入式氣?固噴吹數值模擬速度分布云圖

    Figure  3.  Velocity distribution nephogram of numerical simulation of submerged gas–solid injection

    圖  4  氣體噴吹與埋入式氣?固噴吹沖擊效果對比。(a)純空氣噴吹;(b)空氣+粉劑(SiO2粉)

    Figure  4.  Comparison of the impact effect between submerged gas–solid injection and gas injection: (a) pure air injection; (b) air + powder (SiO2 powder)

    圖  5  埋入式氣體噴吹豎直沖擊深度隨氣體流量和噴槍安裝角度的變化

    Figure  5.  Variation of vertical impact depth of the submerged gas injection with the gas flow rates and installation angles of the submerged nozzle

    圖  6  熔池內氣體噴吹水平沖擊深度隨氣體流量和噴槍安裝角度變化

    Figure  6.  Variation of horizontal impact depth of the submerged gas injection with the gas flow rates and installation angles of the submerged nozzle

    圖  7  (a)埋入式氣?固噴吹與氣體噴吹水平沖擊深度數值模擬結果對比;(b)埋入式氣?固噴吹與氣體噴吹豎直沖擊深度數值模擬結果對比

    Figure  7.  Comparison of the numerical simulation results of (a) horizontal impact depth between submerged gas–solid injection and gas injection and (b) vertical impact depth between submerged gas–solid injection and gas injection

    圖  8  (a)水平沖擊深度隨噴粉速率的變化;(b)豎直沖擊深度隨噴粉速率的變化

    Figure  8.  Relation impact depth and powder injection rate: (a) horizontal impact depth; (b) vertical impact depth

    表  1  各相物理屬性參數

    Table  1.   Physical property parameters of each phase

    Property parametersDensity/(kg·m?3)Viscosity/(kg·m?1·s?1)Thermal conductivity/(W·m?1·K?1)Heat capacity/(J·kg?1·K?1)Temperature/K
    Molten steel72000.0065156701873
    OxygenIdeal gas1.919×10?50.0246Piecewise-polynomial300
    下載: 導出CSV

    表  2  埋入式氣體噴吹數值模擬方案

    Table  2.   Numerical simulation scheme of submerged gas injection

    Serial numberInstallation angle/(°)Gas flow rate/(m3·h?1)
    10200
    20400
    30600
    45200
    55400
    65600
    710200
    810400
    910600
    1015200
    1115400
    1215600
    下載: 導出CSV

    表  3  埋入式氣–固噴吹數值模擬方案

    Table  3.   Numerical simulation scheme of submerged gas–solid injection

    Serial numberInstallation angle/(°)Gas flow rate/(m3·h?1)Powder injection rate/(kg·min?1)
    11020010
    21040010
    31060010
    下載: 導出CSV

    表  4  埋入式氣體噴吹水模型實驗方案

    Table  4.   Water model experiments scheme of submerged gas injection

    VariableInstallation angle/(°)Gas flow rate/(m3·h?1)
    Parameter0, 5, 10, 153, 5, 8, 10, 12, 15
    下載: 導出CSV

    表  5  埋入式氣–固噴吹水模型實驗方案

    Table  5.   Water model experiments scheme of submerged gas–solid injection

    VariableInstallation angle/(°)Gas flow rate/(m3·h?1)Installation depth/mmPowder injection rate/(g·min?1)
    Parameter0, 101020020, 40, 60
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ikei Mori. Electric Arc Furnace Steelmaking. Translated by Zhu G L. Beijing: Metallurgical Industry Press, 2006

    森井廉. 電弧爐煉鋼法. 朱果靈, 譯. 北京: 冶金工業出版社, 2006
    [2] Zhu R, Wei G S, Tang T P. Technologies of purification production in electric arc furnace steelmaking processes. Steelmaking, 2018, 34(1): 10

    朱榮, 魏光升, 唐天平. 電弧爐煉鋼流程潔凈化冶煉技術. 煉鋼, 2018, 34(1):10
    [3] He C L, Zhu R, Dong K, et al. Decarburization model of EAF steelmaking based on fume composition detecting. J Univ Sci Technol Beijing, 2010, 32(12): 1537

    何春來, 朱榮, 董凱, 等. 基于煙氣成分分析的電弧爐煉鋼脫碳模型. 北京科技大學學報, 2010, 32(12):1537
    [4] Sandberg E, Lennox B, Undvall P. Scrap management by statistical evaluation of EAF process data. Control Eng Pract, 2007, 15(9): 1063 doi: 10.1016/j.conengprac.2007.01.001
    [5] Zhang J L, Liu Y Q, Zhang Z W, et al. A new high quality EAF charge. Int J Miner Metall Mater, 2001, 8(1): 20
    [6] Dankwah J R, Koshy P, Sahajwalla V. Reduction of FeO in EAF steelmaking slag by blends of metallurgical coke and end-of-life polyethylene terephthalate. Ironmaking Steelmaking, 2014, 41(6): 401 doi: 10.1179/1743281213Y.0000000125
    [7] Dong K, Zhu R, Liu W J, et al. Influencing factors of EAF off-gas composition. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 77

    董凱, 朱榮, 劉文娟, 等. 電弧爐爐氣成分的影響因素. 北京科技大學學報, 2011, 33(增刊1): 77
    [8] Wei G S, Zhu R, Wu X T, et al. Technological innovations of carbon dioxide injection in EAF-LF steelmaking. JOM, 2018, 70(6): 969 doi: 10.1007/s11837-018-2814-3
    [9] Zhu R, Hu S Y, Dong K, et al. A kind of Bottom Blowing Element for Oxygen Supply and Powder Injection at the Bottom of Converter: China Patent, CN201610620240.0. 2017-02-08

    朱榮, 胡紹巖, 董凱, 等. 一種用于轉爐底部供氧噴粉的底吹元件: 中國專利, CN201610620240.0. 2017-02-08
    [10] Yan L Y. Technology characteritics of contemporary ultra-high-power electric arc furnace. Spec Steel, 2001, 22(5): 1 doi: 10.3969/j.issn.1003-8620.2001.05.001

    閻立懿. 現代超高功率電弧爐的技術特征. 特殊鋼, 2001, 22(5):1 doi: 10.3969/j.issn.1003-8620.2001.05.001
    [11] Dong K, Wei G S, Chang J, et al, Fluid flow characteristics of molten bath with bottom-blowing in EAF steelmaking, Chin J Eng, 2018, 40(Suppl 1): 93

    董凱, 魏光升, 常軍, 等. 底吹條件下電弧爐煉鋼熔池的流體流動特性. 工程科學學報, 2018, 40(增刊1): 93
    [12] Ma G H, Zhu R, Liu R Z, et al. Development and application of electric arc furnace composite blowing technology. Ind Heat, 2015, 44(2): 1 doi: 10.3969/j.issn.1002-1639.2015.02.001

    馬國宏, 朱榮, 劉潤藻, 等. 電弧爐煉鋼復合吹煉技術的發展及應用. 工業加熱, 2015, 44(2):1 doi: 10.3969/j.issn.1002-1639.2015.02.001
    [13] He Q, Guo Z. Technical development of increasing oxygen used in EAF process. J Iron Steel Res, 2004, 16(5): 1 doi: 10.3321/j.issn:1001-0963.2004.05.001

    賀慶, 郭征. 電弧爐煉鋼強化用氧技術的進展. 鋼鐵研究學報, 2004, 16(5):1 doi: 10.3321/j.issn:1001-0963.2004.05.001
    [14] Alam M, Irons G, Brooks G, et al. Inclined jetting and splashing in electric arc furnace steelmaking. ISIJ Int, 2011, 51(9): 1439 doi: 10.2355/isijinternational.51.1439
    [15] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39(1): 201 doi: 10.1016/0021-9991(81)90145-5
    [16] Mu Z W, Zhang Z Y, Zhao T. Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng, 2012, 28: 808 doi: 10.1016/j.proeng.2012.01.814
    [17] Kleefsman K M T, Fekken G, Veldman A E P, et al. A Volume-of-Fluid based simulation method for wave impact problems. J Comput Phys, 2005, 206(1): 363 doi: 10.1016/j.jcp.2004.12.007
    [18] Wijayanta A T, Alam M S, Nakaso K, et al. Combustibility of biochar injected into the raceway of a blast furnace. Fuel Process Technol, 2014, 117: 53 doi: 10.1016/j.fuproc.2013.01.012
    [19] Peters B. Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles. Combust Flame, 2002, 131(1-2): 132 doi: 10.1016/S0010-2180(02)00393-0
    [20] Li Q, Li M M, Kuang S B, et al. Numerical simulation of the interaction between supersonic oxygen jets and molten slag–metal bath in steelmaking BOF process. Metall Mater Trans B, 2015, 46(3): 1494 doi: 10.1007/s11663-015-0292-3
    [21] Lv M, Zhu R, Guo Y G, et al. Simulation of flow fluid in the BOF steelmaking process. Metall Mater Trans B, 2013, 44(6): 1560 doi: 10.1007/s11663-013-9935-4
    [22] Li M M, Li Q, Kuang S B, et al. Transferring characteristics of momentum/energy during oxygen jetting into the molten bath in BOFs: a computational exploration. Steel Res Int, 2016, 87(3): 288 doi: 10.1002/srin.201500034
    [23] Feng Y Q, Yu A B. Assessment of model formulations in the discrete particle simulation of gas-solid flow. Ind Eng Chem Res, 2004, 43(26): 8378 doi: 10.1021/ie049387v
    [24] Miyata M, Higuchi Y. Fluid dynamics analysis of gas jet with particles. ISIJ Int, 2017, 57(10): 1742 doi: 10.2355/isijinternational.ISIJINT-2017-107
  • 加載中
圖(8) / 表(5)
計量
  • 文章訪問數:  850
  • HTML全文瀏覽量:  610
  • PDF下載量:  19
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-05
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回