<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電化學修復后鋼筋混凝土黏結性能演變規律

樊瑋潔 吳云濤 毛江鴻 金偉良 陳錦森

樊瑋潔, 吳云濤, 毛江鴻, 金偉良, 陳錦森. 電化學修復后鋼筋混凝土黏結性能演變規律[J]. 工程科學學報, 2021, 43(6): 778-785. doi: 10.13374/j.issn2095-9389.2020.04.01.004
引用本文: 樊瑋潔, 吳云濤, 毛江鴻, 金偉良, 陳錦森. 電化學修復后鋼筋混凝土黏結性能演變規律[J]. 工程科學學報, 2021, 43(6): 778-785. doi: 10.13374/j.issn2095-9389.2020.04.01.004
FAN Wei-jie, WU Yun-tao, MAO Jiang-hong, JIN Wei-liang, CHEN Jin-sen. Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation[J]. Chinese Journal of Engineering, 2021, 43(6): 778-785. doi: 10.13374/j.issn2095-9389.2020.04.01.004
Citation: FAN Wei-jie, WU Yun-tao, MAO Jiang-hong, JIN Wei-liang, CHEN Jin-sen. Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation[J]. Chinese Journal of Engineering, 2021, 43(6): 778-785. doi: 10.13374/j.issn2095-9389.2020.04.01.004

電化學修復后鋼筋混凝土黏結性能演變規律

doi: 10.13374/j.issn2095-9389.2020.04.01.004
基金項目: 國家自然科學基金重點資助項目(51638013);國家自然科學基金重點國際合作資助項目(51820105012);國家自然科學基金資助項目(51878610);浙江省自然科學基金資助項目(LQ19E080012);寧波市自然科學基金資助項目(2018A610359)
詳細信息
    通訊作者:

    E-mail:jhmao@nit.zju.edu.cn

  • 中圖分類號: TU375

Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation

More Information
  • 摘要: 針對電化學修復技術導致修復后結構內鋼筋混凝土黏結性能退化問題,通過中心拉拔實驗獲取電化學修復后鋼筋混凝土黏結滑移曲線,研究電化學修復參數(電流密度和通電時間)對鋼筋混凝土黏結性能的影響規律,通過實驗結果進行模型參數分析,建立基于電流密度和通電時間兩個控制變量的黏結強度劣化模型。研究結果表明:電通量較小的情況下,鋼筋混凝土黏結性能損失較小;不控制通電參數的電化學修復技術導致黏結強度下降明顯,采用5 A·m–2的電流開展28 d的恒電流通電,試件的最大黏結力損失量高達56.9%;本文提出的劣化模型可以定量表征電化學修復后試件黏結強度折減情況,模型的數值模擬結果與本文及其他文獻的實驗結果均有較好的一致性,相關系數分別為0.9606和0.9745。

     

  • 圖  1  拉拔試件尺寸(單位:mm)

    Figure  1.  Specimen size (Unit: mm)

    圖  2  通電裝置示意圖

    Figure  2.  Schematic of experimental setup for electrochemical rehabilitation

    圖  3  拉拔裝置及實驗加載圖

    Figure  3.  Pull-out test device and test loading

    圖  4  不同電流密度下的黏結–滑移曲線。(a)1 A·m–2;(b)3 A·m–2;(c)5 A·m–2

    Figure  4.  Bond force–slip curves under different current densities: (a) 1 A·m?2; (b) 3 A·m?2; (c) 5 A·m?2

    圖  5  不同電流密度下的最大黏結力

    Figure  5.  Maximum bond force under different currents densities

    圖  6  不同電流密度下最大黏結力損失量

    Figure  6.  Maximum bond force loss amount under different current densities

    圖  7  不同通電時間下的最大黏結力

    Figure  7.  Maximum bond force under different conduction times

    圖  8  不同通電時間下最大黏結力損失量

    Figure  8.  Maximum bond force loss amount under different conduction times

    圖  9  三維折減模型與本文實驗值

    Figure  9.  Three-dimensional deterioration mode and experimental data of this paper

    圖  10  三維折減模型與文獻[2527]的實驗值

    Figure  10.  Three-dimensional deterioration mode and experimental data of Ref.[2527]

    圖  11  折減模型與實驗值對比

    Figure  11.  Comparison between deterioration mode and experimental data

    表  1  C30混凝土配合比

    Table  1.   Mix proportion of C30 concrete specimen kg·m–3

    WaterCementSandGravel
    2023827511157
    下載: 導出CSV

    表  2  實驗試件分組情況表

    Table  2.   Electrochemical parameters design

    SampleCurrent density / (A·m–2)Conduction time / d
    I1-D717
    I1-D15115
    I1-D28128
    I3-D737
    I3-D15315
    I3-D28328
    I5-D757
    I5-D15515
    I5-D28528
    下載: 導出CSV

    表  3  拉拔實驗最大黏結力

    Table  3.   Maximum force of pull-out test

    SampleMaximum force/kNAverage force/kNAverage
    bond stress/
    MPa
    Average reduced value
    Sample 1Sample 2Sample 3
    I0-D044.3454.7251.8050.2916.341.000
    I1-D750.1650.5849.7650.1716.300.998
    I1-D1549.2149.8649.5449.5416.100.985
    I1-D2846.8145.6950.4947.6615.490.948
    I3-D749.0649.6851.7450.1616.040.997
    I3-D1542.4148.5045.8345.5812.450.906
    I3-D2842.1542.9144.8643.3114.070.861
    I5-D747.1849.2051.3449.2416.000.979
    I5-D1535.1139.0642.5438.9012.640.774
    I5-D2817.7127.8019.5721.697.700.431
    下載: 導出CSV

    表  4  擬合值與實驗值對比

    Table  4.   Comparison between analysis results and experimental results

    ReferenceSamplePractical reduced valueFormula reduced valueReferenceSamplePractical reduced valueFormula reduced value
    This paperI0-D01.0001.000 Lin et al.
    (25 ℃)[25]
    I1-D280.9490.947
    I1-D70.9980.994I2-D280.8760.905
    I1-D150.9850.979I3-D280.8320.820
    I1-D280.9480.947Hao et al.
    (Nature corrosion)[26]
    I1-D280.9500.947
    I3-D70.9970.981I2-D280.8800.905
    I3-D150.9060.929I3-D280.8700.820
    I3-D280.8610.820Liu et al.[27]I1-D280.9480.947
    I5-D70.9790.933I1-D420.9220.907
    I5-D150.7740.778I2-D280.8790.905
    I5-D280.4310.462I2-D420.8210.831
    I3-D280.8100.820
    I3-D420.7550.682
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Peng H D, Liu D W, Dai B, et al. Experimental research on load-shear performance of interface between new and old concrete with corroded planting bar. Chin J Eng, 2018, 40(1): 23

    彭懷德, 劉敦文, 戴兵, 等. 銹蝕植筋下新老混凝土面壓剪試驗研究. 工程科學學報, 2018, 40(1):23
    [2] Shi J J, Sun W, Geng G Q. Steel corrosion in simulated concrete pore solutions using a galvanostatic pulse method. J Univ Sci Technol Beijing, 2011, 33(6): 727

    施錦杰, 孫偉, 耿國慶. 恒電流脈沖法研究鋼筋在模擬混凝土孔溶液中的腐蝕行為. 北京科技大學學報, 2011, 33(6):727
    [3] Vera R, Villarroel M, Carvajal A M, et al. Corrosion products of reinforcement in concrete in marine and industrial environments. Mater Chem Phys, 2009, 114(1): 467 doi: 10.1016/j.matchemphys.2008.09.063
    [4] Shi J J, Sun W, Geng G Q, et al. Corrosion resistance of fine-grained rebar in simulated concrete pore solutions by means of electrochemical methods. J Univ Sci Technol Beijing, 2011, 33(12): 1471

    施錦杰, 孫偉, 耿國慶, 等. 電化學方法研究混凝土模擬液中細晶粒鋼的耐蝕性. 北京科技大學學報, 2011, 33(12):1471
    [5] Zhu Y X, Zhu X C, Luo D K, et al. Influences of electrochemical desalination on the behavior of reinforced concrete. Port Waterway Eng, 2002(5): 8 doi: 10.3969/j.issn.1002-4972.2002.05.003

    朱雅仙, 朱錫昶, 羅德寬, 等. 電化學脫鹽對鋼筋混凝土性能的影響. 水運工程, 2002(5):8 doi: 10.3969/j.issn.1002-4972.2002.05.003
    [6] Xu J Z, Ding Z, Xing F. Research status of electrochemical chloride extraction (ECE) on steel reinforced concrete. Concrete, 2008(9): 22 doi: 10.3969/j.issn.1002-3550.2008.09.008

    徐建芝, 丁鑄, 邢峰. 鋼筋混凝土電化學脫鹽修復技術研究現狀. 混凝土, 2008(9):22 doi: 10.3969/j.issn.1002-3550.2008.09.008
    [7] Guo Y X. Study on Electrochemical Chloride Extraction and Post Performance of Reinforced Concrete [Dissertation]. Dalian: Dalian University of Technology, 2010

    郭育霞. 鋼筋混凝土電化學除氯及除氯后性能研究[學位論文]. 大連: 大連理工大學, 2010
    [8] Glass G K, Buenfeld N R. The inhibitive effects of electrochemical treatment applied to steel in concrete. Corros Sci, 2000, 42(6): 923 doi: 10.1016/S0010-938X(99)00121-3
    [9] Liu Y, Du R G, Lin C J. Progress in electrochemical treatment applied to reinforced concrete. Corros Sci Prot Technol, 2008, 20(2): 125

    劉玉, 杜榮歸, 林昌健. 鋼筋混凝土結構的電化學處理及其研究進展. 腐蝕科學及防護技術, 2008, 20(2):125
    [10] Gao X J, Zheng X M, Yang Y Z. Influence of electrochemical parameters on chloride extraction efficiency. J Shenyang Univ Technol, 2010, 32(5): 579

    高小建, 鄭秀梅, 楊英姿. 電化學參數對混凝土除氯效率的影響. 沈陽工業大學學報, 2010, 32(5):579
    [11] Zhu P, Zheng L, Wang X X, et al. Parameters optimization of electrochemical chloride extraction and exploratory research on its engineering application. China Concr Cem Prod, 2010(2): 4 doi: 10.3969/j.issn.1000-4637.2010.02.002

    祝頻, 鄭靚, 王新祥, 等. 電化學除鹽工藝參數優化及工程應用探索. 混凝土與水泥制品, 2010(2):4 doi: 10.3969/j.issn.1000-4637.2010.02.002
    [12] Rodrigo de Almeida Souza L, de Medeiros M H F, Pereira E, et al. Electrochemical chloride extraction: Efficiency and impact on concrete containing 1% of NaCl. Constr Build Mater, 2017, 145: 435 doi: 10.1016/j.conbuildmat.2017.04.010
    [13] Guo Y X, Gong J X. Study on electrochemical chloride extraction of reinforced concrete. J Taiyuan Univ Technol, 2011, 42(6): 588

    郭育霞, 貢金鑫. 鋼筋混凝土電化學除氯的試驗研究. 太原理工大學學報, 2011, 42(6):588
    [14] Nguyen T H, Nguyen T A, Le V K, et al. Effect of electrochemical chloride extraction treatment on the corrosion of steel rebar in chloride contaminated mortar. Anti-Corros Methods Mater, 2016, 63(5): 377 doi: 10.1108/ACMM-12-2014-1473
    [15] Lei Z H, Qu F, Sun H R, et al. Research on electrochemical chloride extraction of reinforced concrete structures. Bull Chin Ceram Soc, 2018, 37(9): 2834

    雷智昊, 屈鋒, 孫浩然, 等. 鋼筋混凝土結構電化學除氯研究. 硅酸鹽通報, 2018, 37(9):2834
    [16] Ihekwaba N M, Hope B B, Hansson C M. Pull-out and bond degradation of steel rebars in ECE concrete. Cem Concr Res, 1996, 26(2): 267 doi: 10.1016/0008-8846(95)00210-3
    [17] Zheng X M, Li G J, Zhi X L. Effect of electrochemical chloride extraction on adhesion strength between steel bars and concrete. Concrete, 2011(6): 46

    鄭秀梅, 李廣軍, 支秀蘭. 電化學除鹽對鋼筋與混凝土間力的影響. 混凝土, 2011(6):46
    [18] Chang J J. Bond degradation due to the desalination process. Constr Build Mater, 2003, 17(4): 281 doi: 10.1016/S0950-0618(02)00113-7
    [19] Buenfeld N R, Broomfield J P. Influence of electrochemical chloride extraction on the bond between steel and concrete. Mag Concr Res, 2000, 52(2): 79 doi: 10.1680/macr.2000.52.2.79
    [20] Orellan J C, Escadeillas E, Arliguie G. Electrochemical chloride extraction: efficiency and side effects. Cem Concr Res, 2004, 34(2): 227 doi: 10.1016/j.cemconres.2003.07.001
    [21] Liang Y, Luo X Y, Xiao X Q, et al. Experimental study on bond-slip performance of corroded reinforced concrete. Ind Constr, 2012, 42(10): 95

    梁巖, 羅小勇, 肖小瓊, 等. 銹蝕鋼筋混凝土黏結滑移性能試驗研究. 工業建筑, 2012, 42(10):95
    [22] Yuan G L, Guo C, Lv Z T. Experimental study on bond property of reinforced concrete at high temperatures. Ind Constr, 2006, 36(2): 57 doi: 10.3321/j.issn:1000-8993.2006.02.017

    袁廣林, 郭操, 呂志濤. 高溫下鋼筋混凝土黏結性能的試驗與分析. 工業建筑, 2006, 36(2):57 doi: 10.3321/j.issn:1000-8993.2006.02.017
    [23] Zhou Z J, Huo J S, Jin B. Experimental study on bond behavior and damage mechanism analysis of reinforcing steel to concrete interface after elevated temperature. J Exp Mech, 2018, 33(2): 209 doi: 10.7520/1001-4888-16-283

    周子健, 霍靜思, 金寶. 高溫后鋼筋與混凝土黏結性能試驗與損傷機理分析. 實驗力學, 2018, 33(2):209 doi: 10.7520/1001-4888-16-283
    [24] Wang X L, Zha X X, Zhang X C. Bond behavior of FRP rebar and concrete at elevated temperature. J Harbin Inst Technol, 2013, 45(6): 8

    王曉璐, 查曉雄, 張旭琛. 高溫下FRP筋與混凝土的黏結性能. 哈爾濱工業大學報, 2013, 45(6):8
    [25] Lin H, Li Y, Yaqiang Li Y Q. A study on the deterioration of interfacial bonding properties of chloride-contaminated reinforced concrete after electrochemical chloride extraction treatment. Constr Build Mater, 2019, 197: 228 doi: 10.1016/j.conbuildmat.2018.11.196
    [26] Hao T Y, Lin H, Li Y, et al. Effects of electrochemical chloride extraction on the bonding properties of corroded reinforced concrete by the anode of magnesium phosphate cement bonding carbon fiber-reinforced plastics (CFRP). IOP Conf Ser Mater Sci Eng, 2019, 544: 012031 doi: 10.1088/1757-899X/544/1/012031
    [27] Liu B. Study on chloride distribution and bonding properties of concrete structures after Electrochemical chloride extraction [Dissertation]. Yantai: Yantai University, 2008

    劉斌. 砼結構電化學除鹽離子分布及黏結性能研究[學位論文]. 煙臺: 煙臺大學, 2008
  • 加載中
圖(11) / 表(4)
計量
  • 文章訪問數:  1363
  • HTML全文瀏覽量:  603
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-01
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回