-
摘要: 為了提高實際生產中中間包等離子加熱熱效率,改善中間包內鋼液流動狀態,本文根據某鋼廠中間包原型,通過物理模擬對比研究了有無等離子加熱和不同等離子加熱位置下中間包內溫度場和流場的變化情況。研究結果表明,在無等離子加熱條件下,中間包內死區比例較高,達到了36%,死區主要集中在中間包擋墻外側上部區域;當加熱位置位于擋墻外側時,中間包內死區比例與不加熱時相差不大,靠近加熱位置處的溫度急劇上升,擋墻內外兩側的溫度差較大,中間包內整體溫度分布不均勻;加熱位置位于擋墻內側時,中間包死區比例明顯降低,達到29.2%,平均停留時間約增加57 s,出水口溫度明顯上升(約7 ℃),中間包內溫度分布更均勻。Abstract: This study proposes a model to increase the heating efficiency of tundish plasma heating and improve the flow of molten steel in a tundish during production. A physical model was simulated based on the tundish prototype of a steel plant, and the temperature field and flow field of molten steel in the tundish with and without plasma heating at different plasma heating positions were analyzed. The research results showed that in the tundish without plasma heating, the proportion of the dead zone was high, reaching 36%. Moreover, the dead zone was mainly concentrated in the upper area outside the weir in the tundish. When the heating position was located outside the weir, it was found that there was little difference in the proportion of the dead zone between the tundish with and without plasma heating. The temperature near the heating position increased sharply, and the temperature difference of molten metal between the inside and outside of the weir was large. Moreover, the overall temperature distribution in the tundish was not uniform. When the heating position was located inside the weir, the proportion of the dead zone significantly decreased, reaching 29.2%. Further, the average residence time increased by about 57 s. The temperature of the outlet of the tundish increased significantly (about 7 ℃), and the temperature distribution in the tundish was uniform.
-
Key words:
- tundish /
- plasma heating /
- physical simulation /
- temperature distribution /
- proportion of the dead zone
-
表 1 中間包原型與模型的主要參數
Table 1. Main parameters of tundish prototype and model
mm Classification Top
widthBottom
widthTop
lengthBottom
lengthInlet
diameterHeight Surface height
of overflowInsertion depth
of long nozzleWorking liquid
level heightPrototype 1405 857 6621 6073 90.0 1555 1215 250.0 1115 Water model 351 214 1655 1518 22.5 389 304 62.5 279 表 2 主要工藝參數及流量
Table 2. Main process parameters and flow rate
Slab section/mm2 Casting speed/(m·min?1) Qr/(L·min?1) Qm/(L·min?1) 210×700 0.8 117.6 3.68 表 3 模型與原型的等離子加熱參數
Table 3. Plasma heating parameters of model and prototype
Classification Power input/W Heating zone
area/m2Viscosity/
(kg·m?1·s?1)Depth/
mThermal diffusivity/
(m2·s?1)Heating zone
length /mAverage velocity of
liquid /(m·s?1)Plasma heating
numberModel 3354 0.018 0.001 0.279 1.43×10?7 0.110 0.035 44773.1 Prototype 300000 0.300 0.006 1.115 7.7×10?7 0.600 0.045 44901.4 表 4 中間包等離子加熱水模擬實驗方案
Table 4. Experimental schemes of tundish plasma heating in water simulation
Scheme Heating position Steam flow rate/(kg·h?1) A0 (Non plasma heating) A1 Inside of weir 6 A2 outside of weir 6 表 5 不同實驗方案的流體流動特征參數
Table 5. Flow characteristic parameters of fluid in different schemes
Scheme Stagnation time /s Peak time /s Average residence time /s Volume fraction / % Dead volume fraction Dispersed plug volume fraction Well-mixed volume fraction A0 58.0 120.7 528.0 36.0 10.8 53.2 A1 127.7 362.0 584.7 29.2 29.6 41.1 A2 34.3 316.7 477.0 42.2 21.2 36.5 www.77susu.com -
參考文獻
[1] Sahai Y. Tundish technology for casting clean steel: a review. Metall Mater Trans B, 2016, 47(4): 2095 doi: 10.1007/s11663-016-0648-3 [2] Chang S, Zhong L C, Zou Z S. Simulation of flow and heat fields in a seven-strand tundish with gas curtain for molten steel continuous-casting. ISIJ Int, 2015, 55(4): 837 doi: 10.2355/isijinternational.55.837 [3] Kumar A, Mazumdar D, Koria S C. Modeling of fluid flow and residence time distribution in a four-strand tundish for enhancing inclusion removal. ISIJ Int, 2008, 48(1): 38 doi: 10.2355/isijinternational.48.38 [4] Du Y W, Du H M, Du Y L, et al. Numerical analysis the influence factors of the heat loss in the continuous tundish. Henan Metall, 2017, 25(4): 14 doi: 10.3969/j.issn.1006-3129.2017.04.005杜亞偉, 杜海明, 杜玉蘭, 等. 連鑄中間包熱損失影響因素的數值分析. 河南冶金, 2017, 25(4):14 doi: 10.3969/j.issn.1006-3129.2017.04.005 [5] Wang Q, Wang F, Wang B, et al. Fluid flow and heat transfer in a continuous casting tundish with the channel type induction heating. J Iron Steel Res Int, 2012, 19(S2): 969 [6] Vargas-Zamora A, Morales R D, Díaz-Cruz M, et al. Heat and mass transfer of a convective-stratified flow in a trough type tundish. Int J Heat Mass Transfer, 2003, 46(16): 3029 doi: 10.1016/S0017-9310(03)00068-1 [7] Tian J Y, Zhang X L, Li J S, et al. Review of plasma heating technology for continuous casting tundish. Wide Heavy Plate, 2017, 23(2): 45 doi: 10.3969/j.issn.1009-7864.2017.02.012田建英, 張雪良, 李京社, 等. 連鑄中間包等離子加熱技術綜述. 寬厚板, 2017, 23(2):45 doi: 10.3969/j.issn.1009-7864.2017.02.012 [8] Xu J C, Jian H, Nie G S, et al. Application of induction heating technology on casting middle package. Metall Equip, 2018(6): 54 doi: 10.3969/j.issn.1001-1269.2018.06.015徐靖馳, 蹇華, 聶高升, 等. 感應加熱技術在連鑄中間包上的應用. 冶金設備, 2018(6):54 doi: 10.3969/j.issn.1001-1269.2018.06.015 [9] Jiang Z H, Li C J, Jiang Y L, et al. Laboratory research on electroslag heating of molten steel in ladle. Iron Steel, 1995, 30(3): 12姜周華, 李晨雋, 姜永林, 等. 鋼水爐外電渣加熱的實驗研究. 鋼鐵, 1995, 30(3):12 [10] Zhang X S, Zhou Y Q. A mathematical model and simulated test of electroslag heating of liquid steel in a tundish. Energy Metall Ind, 1997, 16(2): 32張新生, 周筠清. 電渣加熱中間包鋼水的數學模型及實驗研究. 冶金能源, 1997, 16(2):32 [11] Li Y, Li L, Chen Y Y, et al. Numerical simulation of electromagnetic-thermal-hydrodynamic field in tundish with sidewall-type induction heating. J Northeast Univ Nat Sci, 2017, 38(7): 966李陽, 李亮, 陳圓圓, 等. 側壁式感應加熱中間包磁/熱/流耦合模擬. 東北大學學報(自然科學版), 2017, 38(7):966 [12] Zuo X J, Yan J W, Luo L H, et al. Application of plasma tundish heating technology in continuous casting process. Iron Steel Technol, 2016(1): 10佐祥均, 閻建武, 羅利華, 等. 等離子中間罐加熱技術在連鑄過程中的應用. 鋼鐵技術, 2016(1):10 [13] Badie J M, Bertrand P, Flamant G. Temperature distribution in a pilot plasma tundish: comparison between plasma torch and graphite electrode systems. Plasma Chem Plasma Process, 2001, 21(2): 279 doi: 10.1023/A:1007004532610 [14] Barrón-Meza M A, Barreto-Sandoval J D J, Morales R D. Physical and mathematical models of steel flow and heat transfer in a tundish heated by plasma. Metall Mater Trans B, 2000, 31(1): 63 doi: 10.1007/s11663-000-0131-y [15] Jiang J, Lu H B, Li Q Y, et al. Application of tundish plasma heater. Contin Cast, 2018, 43(2): 7蔣軍, 路海波, 李勤勇, 等. 中間罐等離子加熱技術在青島特鋼的應用. 連鑄, 2018, 43(2):7 [16] Pak Y A, Filippov G A, Yusupov D I, et al. Two-strand tundish with chambers for plasma heating of liquid metal. Metallurgist, 2014, 58(7): 672 [17] Chattopadhyay K, Isac M, Guthrie R I L. Physical and mathematical modelling of steelmaking tundish operations: a review of the last decade (1999–2009). ISIJ Int, 2010, 50(3): 331 doi: 10.2355/isijinternational.50.331 [18] Yang S F, Wu J Q, Li J S, et al. Physical simulation on optimization of flow control devices in four strand tundish. China Metall, 2019, 29(4): 81楊樹峰, 吳金強, 李京社, 等. 四流中間包控流裝置優化物理模擬. 中國冶金, 2019, 29(4):81 [19] Braga B M, Tavares R P. Description of a new tundish model for treating RTD data and discussion of the communication “New insight into combined model and revised model for RTD curves in a multi-strand tundish” by Lei. Metall Mater Trans B, 2018, 49(4): 2128 doi: 10.1007/s11663-018-1295-7 [20] Chatterjee S, Chattopadhyay K. Transient steel quality under non-isothermal conditions in a multi-strand billet caster tundish: part Ⅱ. Effect of a flow-control device. Ironmaking Steelmaking, 2017, 44(6): 413 doi: 10.1080/03019233.2016.1214015 [21] Liu C L, Cui H, Li Y Y, et al. Study on physical simulation for flow field optimization in tundish for two-strand slab. Metall Equip, 2019(3): 9劉崇林, 崔衡, 李源源, 等. 雙流板坯中間包流場優化的物理模擬研究. 冶金設備, 2019(3):9 [22] Wu G H, Tang H Y, Xiao H, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating. Iron Steel, 2017, 52(11): 20吳光輝, 唐海燕, 肖紅, 等. 通道式感應加熱7流中間包流場的物理模擬. 鋼鐵, 2017, 52(11):20 [23] Barreto-Sandoval J D J, Hills A W S, Barrón-Meza M A, et al. Physical modelling of tundish plasma heating and its mathematical interpretation. ISIJ Int, 1996, 36(9): 1174 doi: 10.2355/isijinternational.36.1174 -