Three-dimensional morphology and thermodynamic calculation of inclusions in stainless steel
-
摘要: 采用無水電解法提取不銹鋼中存在的典型夾雜物,通過掃描電子顯微鏡觀察夾雜物三維形貌,并根據元素組成對夾雜物進行分類和形貌分析,對具有相同化學成分但不同三維形貌的夾雜物進行了表征和歸納。利用FactSage 7.0熱力學軟件,對不同夾雜物的平衡狀態進行了計算,研究了溫度和鋼液成分對于夾雜物平衡的影響,并得到相應的平衡相圖。結果表明,無水電解可以有效地將不銹鋼中夾雜物完整地提取出來,避免了金相法帶來的誤差,可以更加清晰的觀測夾雜物的三維形貌;經掃描電子顯微鏡觀察和測量,較大的氧化鋁夾雜物表面較為容易出現鈦元素的富集區域,且大部分夾雜物形貌主要為球狀和表面較為光滑的多面體狀,直徑一般不大于5 μm。通過熱力學計算得到,鋼中夾雜物的生成與鋼中元素質量分數密切相關,在1873 K時,Mg、Ti、Si元素質量分數的不同會導致生成不同的夾雜物。Abstract: The typical inclusions in stainless steels were extracted by the anhydrous electrolysis method, the three-dimensional morphology of the inclusions was observed by scanning electron microscopy (SEM), the inclusions were classified and analyzed according to the element composition, and the inclusions with the same chemical composition but different three-dimensional morphology were characterized and summarized. The equilibrium states of the different inclusions were calculated by the thermodynamic software FactSage 7.0, the effects of temperature and molten steel composition on the equilibrium states of inclusions were studied, and the corresponding equilibrium phase diagrams were obtained. In the results, the inclusions in stainless steels can be extracted effectively by the anhydrous electrolysis method, avoiding the error caused by the metallographic method, and the three-dimensional morphology of inclusions can be observed more clearly; according to the SEM observation and measurement, the enrichment area of titanium is likely present at the larger alumina inclusion surface, and most of inclusions are spherical and polyhedral with smooth surface, whose diameters are generally no more than 5 μm. According to the thermodynamic calculation, the inclusions in steels are closely related to the mass fraction of elements in steels; the different mass fractions of Mg, Ti, and Si elements may lead to the different inclusions at 1873 K.
-
Key words:
- stanless steel /
- inclusions /
- three-dimensional morphology /
- anhydrous electrolysis /
- thermodynamics
-
表 1 AISI321不銹鋼化學成分(質量分數)
Table 1. Chemical composition of AISI321 stainless steels
% C Si Mn P S Cr Ni Ti Al N 0.03 0.37 1.13 0.039 0.002 19.14 8.76 0.307 0.026 0.02 www.77susu.com -
參考文獻
[1] Yang W, Wang X H, Zhang L F, et al. Characteristics of alumina-based inclusions in low carbon Al-killed steel under no-stirring condition. Steel Res Int, 2013, 84(9): 878 doi: 10.1002/srin.201200271 [2] Kang Y, Thunman M, Du S C, et al. Aluminum deoxidation equilibrium of molten iron?aluminum alloy with wide aluminum composition range at 1873 K. ISIJ Int, 2009, 49(10): 1483 doi: 10.2355/isijinternational.49.1483 [3] Bai X F, Sun Y H, Zhang Y M. Transient evolution of inclusions during Al and Ti additions in Fe-20 mass pct Cr alloy. Metals, 2019, 9(6): 702 doi: 10.3390/met9060702 [4] Jiang M F, Zhang Z X, Wang D Y, et al. Inclusions in characteristic of Ti/Al deoxidation steel and the analysis of nozzle clogging problem. Ind Heat, 2011, 40(4): 60 doi: 10.3969/j.issn.1002-1639.2011.04.021姜茂發, 張志祥, 王德永, 等. 鋁鈦脫氧鋼中夾雜物特征及水口結瘤問題分析. 工業加熱, 2011, 40(4):60 doi: 10.3969/j.issn.1002-1639.2011.04.021 [5] Sun Y H, Bai X F, Yin X, et al. Research on submerged entry nozzles clogging during AISI 321 stainless steel billet casting. Chin J Eng, 2016, 38(Suppl 1): 109孫彥輝, 白雪峰, 殷雪, 等. 321不銹鋼小方坯浸入式水口堵塞研究. 工程科學學報, 2016, 38(增刊1): 109 [6] Park J H, Kim D S. Effect of CaO?Al2O3?MgO slags on the formation of MgO?Al2O3 inclusions in ferritic stainless steel. Metall Mater Trans B, 2005, 36(4): 495 doi: 10.1007/s11663-005-0041-0 [7] Wei Y W, Li N, Pan D F. Thermodynamics analysis on the formation of spinel inclusion in the steel via MgO based refractories. Bull Chin Ceram Soc, 2006, 25(6): 34 doi: 10.3969/j.issn.1001-1625.2006.06.009魏耀武, 李楠, 潘德福. 鎂質耐火材料與鋼中鎂鋁尖晶石夾雜形成的熱力學關系. 硅酸鹽通報, 2006, 25(6):34 doi: 10.3969/j.issn.1001-1625.2006.06.009 [8] Jiang G L, Li J S, Li X D, et al. Thermodynamics on the formation and transformation of MgO·Al2O3 inclusions in alloy steel. J Univ Sci Technol Beijing, 2009, 31(Suppl 1): 92姜桂連, 李京社, 李向東, 等. 合金鋼中鎂鋁尖晶石夾雜物生成與轉化熱力學. 北京科技大學學報, 2009, 31(增刊1): 92 [9] Jiang M, Wang X H, Chen B, et al. Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag. ISIJ Int, 2010, 50(1): 95 doi: 10.2355/isijinternational.50.95 [10] Lang W Y. Modification Effects of Mg, Ca Treatment on Non-metallic Inclusions in Molten Steel [Dissertation]. Shenyang: Northeastern University, 2014郎煒昀. 鎂、鈣處理對鋼中非金屬夾雜物的變質效果[學位論文]. 沈陽: 東北大學, 2014 [11] Yang L L, Bao Y P, Liu J H. Investigations in non-metallic inclusions modification effects of calcium treatment in steel. Steelmaking, 2009, 25(4): 35楊伶俐, 包燕平, 劉建華. 鈣處理對鋼中非金屬夾雜物變性效果分析. 煉鋼, 2009, 25(4):35 [12] Zheng H G, Chen W Q, Bo S M, et al. Study on inclusions in Ti stabilized stainless steel during steelmaking and casting. Iron Steel, 2005, 40(5): 21 doi: 10.3321/j.issn:0449-749X.2005.05.006鄭宏光, 陳偉慶, 薄世明, 等. 鈦穩定化不銹鋼中夾雜物的形成和變化. 鋼鐵, 2005, 40(5):21 doi: 10.3321/j.issn:0449-749X.2005.05.006 [13] Zhang H J, Chen W Q, Zheng H G. Study on controlling of titania inclusions in ferritic stainless steel with titanium. Shanghai Met, 2010, 32(3): 20 doi: 10.3969/j.issn.1001-7208.2010.03.005張賀佳, 陳偉慶, 鄭宏光. 含鈦鐵素體不銹鋼中氧化鈦夾雜物控制的研究. 上海金屬, 2010, 32(3):20 doi: 10.3969/j.issn.1001-7208.2010.03.005 [14] Yuan G. An Experimental Study on Silicon-Aluminum Complex Deoxidation and the Inclusions of Titanium Bearing Ultra-Pure Ferritic Stainless Steel [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2013袁綱. 鈦穩定超純鐵素體不銹鋼硅鋁復合脫氧及夾雜物演變實驗研究[學位論文]. 武漢: 武漢科技大學, 2013 [15] Shang D L, Wang X D, Wang G C, et al. Study on non- metallic inclusions in steel by the method of non-destructive extraction. Metall Stand Qual, 2005, 43(1): 28 doi: 10.3969/j.issn.1003-0514.2005.01.011尚德禮, 王習東, 王國承, 等. 無損傷提取分析鋼中非金屬夾雜物的實驗研究. 冶金標準化與質量, 2005, 43(1):28 doi: 10.3969/j.issn.1003-0514.2005.01.011 [16] Bai X F, Sun Y H, Chen R M, et al. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels. Int J Miner Metall Mater, 2019, 26(5): 573 doi: 10.1007/s12613-019-1766-0 [17] Li M, Zhang L F, Luo Y, et al. Morphology of inclusions and precipitates in continuous casting slab of an oriented electrical steel. China Metall, 2018, 28(Suppl 1): 95李明, 張立峰, 羅艷, 等. 取向硅鋼連鑄坯中夾雜物和析出相的形貌特征. 中國冶金, 2018, 28(增刊1): 95 [18] Liu H L, Li G Q, Li Y J, et al. Non-aqueous electrolysis separation of Ti and Nb bearing inclusions in ultra-pure ferritic stainless steel and analysis of their precipitation behavior. Chin J Process Eng, 2013, 13(1): 33劉赫莉, 李光強, 李永軍, 等. 超純鐵素體不銹鋼中含Ti和Nb夾雜物的非水電解分離及其在鋼中的析出行為分析. 過程工程學報, 2013, 13(1):33 [19] Panja S, Chowdhury P, Chakravorti S. Modulation of complexation of 4(1H-pyrrole 1-yl) benzoic acid with β-cyclodextrin in aqueous and non-aqueous environments. Chem Phys Lett, 2004, 393(4-6): 409 doi: 10.1016/j.cplett.2004.06.063 [20] Karasev A V, Suito H. Analysis of composition and size distribution of inclusions in Fe-10mass% Ni alloy deoxidized by Al and Mg using laser ablation ICP mass spectrometry. ISIJ Int, 2004, 44(2): 364 doi: 10.2355/isijinternational.44.364 [21] Ito A, Suito H, Inoue R. Size distribution of multi-phase deoxidation particles for heterogeneous crystallization of TiN and solidification structure in Ti-added ferritic stainless steel. ISIJ Int, 2012, 52(7): 1196 doi: 10.2355/isijinternational.52.1196 [22] Shang D L, Wang G C, Lü C F, et al. Experimental study on inclusion in steel by the method of electrolysis of non-aqueous solution. Metall Collect, 2007(6): 7尚德禮, 王國承, 呂春風, 等. 非水溶液電解法分析鋼中夾雜物的實驗研究. 冶金叢刊, 2007(6):7 -