<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

夾雜物對Q235鋼耐腐蝕行為的影響

楊軼軒 陽晉 張威 王敏 李嵐昕 李新

楊軼軒, 陽晉, 張威, 王敏, 李嵐昕, 李新. 夾雜物對Q235鋼耐腐蝕行為的影響[J]. 工程科學學報, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05
引用本文: 楊軼軒, 陽晉, 張威, 王敏, 李嵐昕, 李新. 夾雜物對Q235鋼耐腐蝕行為的影響[J]. 工程科學學報, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05
YANG Yi-xuan, YANG Jin, ZHANG Wei, WANG Min, LI Lan-Xin, LI Xin. Effect of inclusions on corrosion resistance of carbon steel[J]. Chinese Journal of Engineering, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05
Citation: YANG Yi-xuan, YANG Jin, ZHANG Wei, WANG Min, LI Lan-Xin, LI Xin. Effect of inclusions on corrosion resistance of carbon steel[J]. Chinese Journal of Engineering, 2020, 42(S): 27-33. doi: 10.13374/j.issn2095-9389.2020.03.25.s05

夾雜物對Q235鋼耐腐蝕行為的影響

doi: 10.13374/j.issn2095-9389.2020.03.25.s05
基金項目: 中國通號“十三五”重大科技專項資助項目(2300-K1180009)
詳細信息
    通訊作者:

    E-mail:worldmind@163.com

  • 中圖分類號: TG172

Effect of inclusions on corrosion resistance of carbon steel

More Information
  • 摘要: 海洋環境對于金屬的腐蝕具有明顯的加速作用,尤其在高鐵海底隧道環境中,金屬比正常的服役時間變短,這種腐蝕情況下會影響高鐵的安全和準點運行。基于以上背景,通過夾雜物自動掃描、鋼的加速腐蝕及電化學測試對鋼中的夾雜物誘發腐蝕行為進行系統分析,重點分析了高鐵軌旁信號設備連接金屬件(Q235)中夾雜物在鹽霧環境下的腐蝕行為。結果表明:鋼中主要夾雜物為氧化物、硫化物或者其復合夾雜,而這兩類夾雜物對于誘發鋼基體點蝕的原因不同。其中數量最多、尺寸小于5 μm類型的夾雜物為硫化物夾雜和氧硫復合類型夾雜物;數量少、尺寸大于5 μm的夾雜物為氧化物夾雜。在服役過程中,鋼中硫化物夾雜易溶解脫落形成點蝕坑,而氧化物夾雜周圍基體會先溶解引起夾雜物脫落形成點蝕坑,復合類夾雜物也是誘發鋼發生腐蝕的因素,不同復合類型的夾雜物腐蝕方式不同,硫化物夾雜和氧硫復合夾雜對碳鋼影響較大。電化學測試表明自腐蝕電位約為為?0.1 V,Q235鋼本身抗腐蝕能力不強。夾雜物在腐蝕過程中參與了腐蝕,引起陽極極化曲線的波動,加快了Q235鋼的腐蝕情況。研究結果對于認識和改善鋼的耐腐蝕性能有指導意義。

     

  • 圖  1  電化學測試示意圖

    Figure  1.  Schematic of electrochemical testing

    圖  2  不同類型夾雜物尺寸及數量

    Figure  2.  Dimension and number of different types of inclusions

    圖  3  復合類夾雜物形貌圖

    Figure  3.  Morphologies of composite inclusions

    圖  4  不同類型夾雜物分布圖

    Figure  4.  Distribution of different types of inclusions

    圖  5  硫化物與氧化物夾雜腐蝕機理。(a)硫化物;(b)氧化物

    Figure  5.  Corrosion mechanisms of sulfide and oxide inclusions: (a) sulfide; (b) oxide

    圖  6  復合夾雜物侵蝕后形貌特征。(a1)CaS?Al2O3侵蝕5 s;(b1)MgO?Al2O3侵蝕5 s;(a2)CaS?Al2O3侵蝕30 s;(b2)MgO?Al2O3侵蝕30 s

    Figure  6.  Corrosion morphologies of composite inclusions: (a1) CaS–Al2O3 erosion for 5 s; (b1) MgO–Al2O3 erosion for 5 s; (a2) CaS–Al2O3 erosion for 30 s; (b2) MgO–Al2O3 erosion for 30 s

    圖  7  CaS?Al2O3元素面掃描圖。(a)侵蝕5 s;(b)侵蝕30 s

    Figure  7.  Elements mapping of CaS–Al2O3: (a) erosion for 5 s; (b) erosion for 30 s

    圖  8  Q235鋼在1% NaCl溶液中的開路電位(a)及動電位極化曲線(b)

    Figure  8.  Open circuit potential (a) and dynamic polarization curve (b) of Q235 steel in 1% NaCl solution

    圖  9  Q235鋼在1% NaCl溶液中的阻抗Bode圖(a)和阻抗Nyquist圖(b)

    Figure  9.  Impedance Bode plot (a) and impedance Nyquist plot (b) of Q235 steel in 1% NaCl solution

    表  1  Q235鋼化學成分(質量分數)

    Table  1.   Chemical composition of Q235 steel %

    CSiMnPS
    0.15730.41220.17890.04360.0445
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Chen X Q, Chang W S, Chen D B. Law and feature of pitting caused by inclusion in carbon steel. J Naval Univ Eng, 2004, 16(6): 30 doi: 10.3969/j.issn.1009-3486.2004.06.006

    陳學群, 常萬順, 陳德斌. 碳鋼中夾雜物誘發點蝕的規律和特性研究. 海軍工程大學學報, 2004, 16(6):30 doi: 10.3969/j.issn.1009-3486.2004.06.006
    [2] Ma J H, Piao Z L, Wang Y, et al. Research on behavior of micro-inclusions in Q235 steel. Shanghai Met, 2017, 39(2): 55 doi: 10.3969/j.issn.1001-7208.2017.02.012

    馬軍紅, 樸占龍, 王雁, 等. Q235鋼中顯微夾雜物行為研究. 上海金屬, 2017, 39(2):55 doi: 10.3969/j.issn.1001-7208.2017.02.012
    [3] Zheng W, Xiong S, Li T Y, et al. Effect of inclusions on pitting susceptibility in low alloy steel. Steelmaking, 2017, 33(5): 31

    鄭萬, 熊珊, 李天佑, 等. 夾雜物對低合金鋼點蝕誘發敏感性的影響. 煉鋼, 2017, 33(5):31
    [4] Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corros Sci, 2013, 76: 267 doi: 10.1016/j.corsci.2013.06.049
    [5] Du X D, Wang F, Gao Y, et al. Effect of heat treatment process on mechanical and corrosion properties of Mg?7Al?1Ca?0.5Sn alloy. Chin J Rare Met, 2019, 43(12): 1283

    杜旭東, 王峰, 高藝, 等. 熱處理工藝對Mg?7Al?1Ca?0.5Sn合金力學與腐蝕性能的影響研究. 稀有金屬, 2019, 43(12):1283
    [6] Zhang C Y, Zhang Q, Li J G, et al. Micro-corrosion test research on pitting initiation site of the inclusions of carbon steel and low alloy steel in chlorine ion solution. Metall Anal, 2014, 34(1): 22

    張春亞, 張奇, 李繼高, 等. 碳鋼及低合金鋼在氯離子溶液中夾雜物誘發點蝕位置顯微腐蝕實驗探討. 冶金分析, 2014, 34(1):22
    [7] Zhang W M, Ji H, Ma T D, et al. Corrosion behaviors of 15% SiCp/2009Al composite in 3.5% NaCl solution. Chin J Rare Met, 2018, 42(5): 516

    張文梅, 紀紅, 馬通達, 等. 15% SiCp/2009Al復合材料在3.5% NaCl溶液中的腐蝕行為. 稀有金屬, 2018, 42(5):516
    [8] Ray G P, Jarman R A, Thomas J G. The influence of non-metallic inclusions on the corrosion fatigue of mild steel. Corros Sci, 1985, 25(3): 171 doi: 10.1016/0010-938X(85)90093-9
    [9] Krawiec H, Vignal V, Heintz O, et al. Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels. Electrochim Acta, 2006, 51(16): 3235 doi: 10.1016/j.electacta.2005.09.015
    [10] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3, inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007
    [11] Zhu T W, Huang F, Liu J, et al. Effects of inclusion on corrosion resistance of weathering steel in simulated industrial atmosphere. Anti-Corros Methods Mater, 2016, 63(6): 490 doi: 10.1108/ACMM-05-2015-1538
    [12] Wu H B, Wang D, Liang J M, et al. Influence of inclusion on pitting corrosion behavior of low-alloy steel for bottom plates of cargo oil tanks. Trans Mater Heat Treat, 2014, 35(12): 172

    武會賓, 王迪, 梁金明, 等. 夾雜物對低合金鋼在酸性Cl?溶液環境中點蝕行為的影響. 材料熱處理學報, 2014, 35(12):172
    [13] Guo J, Cheng S S, Guo H J, et al. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium. Int J Miner Metall Mater, 2018, 25(3): 280 doi: 10.1007/s12613-018-1571-1
    [14] Li X, Bao Y P, Wang M. Peeling defects of cold rolled interstitial-free steel sheet due to inclusion movement. Ironmaking Steelmaking, 2020, 47(1): 1 doi: 10.1080/03019233.2018.1483592
    [15] Yang L, Cheng G G. Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel. Int J Miner Metall Mater, 2017, 24(8): 869 doi: 10.1007/s12613-017-1472-8
    [16] Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr?Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945

    張峰, 陳惠芬, 柴鋒, 等. 夾雜物對Cr?Ni系高強度鋼耐蝕性能的影響. 鋼鐵研究學報, 2017, 29(11):945
    [17] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci, 2011, 53(4): 1201 doi: 10.1016/j.corsci.2010.12.011
    [18] Li Y B, Liu J, Deng Y D, et al. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution. J Alloys Compd, 2016, 673: 28 doi: 10.1016/j.jallcom.2016.02.224
    [19] Fushimi K, Takabatake Y, Nakanishi T, et al. Microelectrode techniques for corrosion research of iron. Electrochim Acta, 2013, 113: 741 doi: 10.1016/j.electacta.2013.03.021
    [20] Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research— —Analysis of the role of stress on pitting sensitivity. Corros Sci, 2007, 49(1): 158 doi: 10.1016/j.corsci.2006.05.032
    [21] Maack B, Nilius N. In-situ optical view onto copper oxidation— —role of reactive interfaces and self-heating. Corros Sci, 2019, 159: 108112 doi: 10.1016/j.corsci.2019.108112
    [22] Dastgerdi A A, Brenna A, Ormellese M, et al. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel. Corros Sci, 2019, 159: 108160 doi: 10.1016/j.corsci.2019.108160
    [23] Fulton G, Lunev A. Probing the correlation between phase evolution and growth kinetics in the oxide layers of tungsten using Raman spectroscopy and EBSD. Corros Sci, 2020, 162: 108221 doi: 10.1016/j.corsci.2019.108221
    [24] Diler E, Rioual S, Lescop B, et al. Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions. Corros Sci, 2012, 65: 178 doi: 10.1016/j.corsci.2012.08.014
    [25] Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH. Corros Sci, 2012, 56: 129 doi: 10.1016/j.corsci.2011.11.012
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1027
  • HTML全文瀏覽量:  668
  • PDF下載量:  45
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-25
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回