<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

大線能量焊接用EH420海工鋼生產工藝及焊接性能

劉洪波 李建新 吝章國 李玉謙 田志強 杜琦銘 梅東貴 劉崇 劉占禮 馬浩冉

劉洪波, 李建新, 吝章國, 李玉謙, 田志強, 杜琦銘, 梅東貴, 劉崇, 劉占禮, 馬浩冉. 大線能量焊接用EH420海工鋼生產工藝及焊接性能[J]. 工程科學學報, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001
引用本文: 劉洪波, 李建新, 吝章國, 李玉謙, 田志強, 杜琦銘, 梅東貴, 劉崇, 劉占禮, 馬浩冉. 大線能量焊接用EH420海工鋼生產工藝及焊接性能[J]. 工程科學學報, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001
LIU Hong-bo, LI Jian-xin, LIN Zhang-guo, LI Yu-qian, TIAN Zhi-qiang, DU Qi-ming, MEI Dong-gui, LIU Chong, LIU Zhan-li, MA Hao-ran. Production technology and welding properties of high heat input welding EH420 offshore steel[J]. Chinese Journal of Engineering, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001
Citation: LIU Hong-bo, LI Jian-xin, LIN Zhang-guo, LI Yu-qian, TIAN Zhi-qiang, DU Qi-ming, MEI Dong-gui, LIU Chong, LIU Zhan-li, MA Hao-ran. Production technology and welding properties of high heat input welding EH420 offshore steel[J]. Chinese Journal of Engineering, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001

大線能量焊接用EH420海工鋼生產工藝及焊接性能

doi: 10.13374/j.issn2095-9389.2020.03.23.001
基金項目: 國家重點研發計劃資助項目(2016YFB0300602);深水油氣管線關鍵技術與裝備北京市重點實驗室開放基金資助項目(BIPT2019001)
詳細信息
    通訊作者:

    E-mail:ustbliuhongbo@163.com

  • 中圖分類號: TG406

Production technology and welding properties of high heat input welding EH420 offshore steel

More Information
  • 摘要: 河鋼集團有限公司開發了利用鋼液中形成TiOx?MgO?CaO細小粒子改善焊接粗晶熱影響區韌性的ITFFP技術(Improve the toughness of HAZ by forming TiOx?MgO?CaO fine particles in steel),成功試制生產出大線能量焊接用30 mm厚度規格(H30)和60 mm厚度規格(H60)EH420海洋工程用鋼。母材力學性能試驗結果表明,H30和H60試制鋼屈服強度分別達到461 MPa和534 MPa,抗拉強度分別達到570 MPa和628 MPa,延伸率分別為26%和24.5%,滿足EH420海洋工程用鋼國家標準要求。采用Gleeble-3800型熱模擬試驗機對試制鋼進行了200 kJ·cm?1條件下熱模擬試驗,并對焊接熱影響區中的顯微組織和?40 ℃沖擊韌性進行了分析和測試。結果表明,試制鋼中形成的CaO(?MgO)?Al2O3?TiOx?MnS夾雜物可以有效地誘導針狀鐵素體析出,顯著提高鋼材的沖擊韌性。另外,利用氣電立焊設備對H30和H60試制鋼分別進行了焊接線能量為247 kJ·cm?1和224 kJ·cm?1的實焊試驗,結果顯示,H30試制鋼焊接接頭表面和根部焊縫處?40 ℃沖擊吸收功值≥74 J,焊接熱影響區≥115 J,H60試制鋼焊接接頭表面和根部焊縫處?40 ℃沖擊吸收功值≥91 J,焊接熱影響區≥75 J,焊接接頭的沖擊性能遠高于國家標準值42 J。

     

  • 圖  1  H30和H60試制鋼熱軋態顯微組織(GB:粒狀貝氏體,PF:塊狀鐵素體,AF:針狀鐵素體)。(a)H30;(b)H60

    Figure  1.  Microstructure of hot-rolled H30 and H60 tested steels (GB: granular bainite, PF: polygonal ferrite, AF: acicular ferrite): (a) H30; (b) H60

    圖  2  H30和H60試制鋼HAZ顯微組織(AF:針狀鐵素體,GBF:晶界鐵素體,FSP:側板條鐵素體)。(a)H30;(b)H60

    Figure  2.  Microstructure of the HAZ in H30 and H60 tested steels (AF: acicular ferrite, GBF: grain boundary ferrite, FSP: ferrite side plate): (a) H30; (b) H60

    圖  3  H30試制鋼HAZ顯微組織和夾雜物關系(CAT:CaO?Al2O3?TiOx?MnS夾雜物,CMAT:CaO?MgO?Al2O3?TiOx?MnS夾雜物)。(a)H30試制鋼HAZ顯微組織;(b)H30試制鋼HAZ顯微組織示意圖;(c)P1夾雜物線掃描分析結果;(d)P2夾雜物面掃描分析結果

    Figure  3.  Relationships between the microstructures and inclusions of the HAZ in H30 tested steel (CAT: CaO?Al2O3?TiOx?MnS complex inclusions, CMAT:CaO?MgO?Al2O3?TiOx?MnS complex inclusion): (a) microstructure of the HAZ in H30 tested steel; (b) schematic diagram of the microstructure of the HAZ in H30 tested steel; (c) line scanning of P1 inclusion; (d) mapping scanning of P2 inclusion

    圖  4  H30試制鋼焊接接頭表面和根部各位置沖擊吸收功值。(a)H30試制鋼焊縫表面;(b)H30試制鋼焊縫根部

    Figure  4.  Absorbed impact energy of the surface of a welded joint in H30 tested steel: (a) weld surface of H30 tested steel; (b) weld root of H30 tested steel

    圖  5  H60試制鋼焊接接頭表面和根部各位置沖擊吸收功值。(a)H60試制鋼焊縫表面;(b)H60試制鋼焊縫根部

    Figure  5.  Absorbed impact energy of the surface of a welded joint in H60 tested steel: (a) weld surface of H60 tested steel; (b) weld root of H60 tested steel

    表  1  試制鋼的化學成分(質量分數)

    Table  1.   Chemical compositions of tested steels %

    Steel No.CSiMnPSAlCuNiCrBTiCa+Mg
    H300.0770.151.550.00810.00330.00350.0290.030.0260.00070.008≤0.003
    H600.0910.141.530.00720.00370.00560.030.030.0290.00070.008≤0.003
    下載: 導出CSV

    表  2  氣電立焊焊接參數

    Table  2.   Parameters during the electrode-gas welding process

    Steel No.Weld typeBevel angle /
    (°)
    Welding currentArc voltage /
    V
    GasWelding speed/
    (mm·min?1)
    Heat input /
    (kJ·cm?1)
    Power typeCurrent /ATypeFlow rate / (L·min?1)
    H30Single side EGW30DCEP38045CO22041.5247
    H60Double side EGW40DCEP41050CO22054.9224
    下載: 導出CSV

    表  3  試制鋼母材力學性能

    Table  3.   Mechanical properties at room temperature of tested steels

    Steel No.Mechanical properties
    Yield strength /MPaTensile strength /MPaElongation /%Charpy impact energy at ?40 ℃ / J
    Value #1Value #2Value #3Average value
    H3046157026325352337338
    H6053462824.5311315318315
    EH420 (GB/T 712—2011)≥420530?680≥18≥42
    下載: 導出CSV

    表  4  試制鋼200 kJ·cm?1焊接熱模擬后HAZ低溫沖擊吸收功

    Table  4.   Impact absorbed energy of the HAZ in tested steels after 200 kJ·cm?1 welding thermal simulation

    Steel No.Heat input /
    (kJ·cm?1)
    Charpy impact energy at ?40 ℃ / J
    Value #1Value #2Value #3Average value
    H30200193247169203
    H6012818392135
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Lei Y, Xu X F, Yu S F, et al. Present status and developmental direction of high performance structural material-oriented ultra-fine grained steel. J China Univ Pet Ed Nat Sci, 2007, 31(2): 155

    雷毅, 許曉鋒, 余圣甫, 等. 面向高性能結構材料的超細晶粒鋼研究現狀及發展方向. 中國石油大學學報: 自然科學版, 2007, 31(2):155
    [2] Ding F B, Huang Y. Progress of the Chinese shipbuilding industry and welding technology. China Weld, 1994, 3(2): 105
    [3] Xu L Y, Yang J, Wang R Z. Influence of Al content on the inclusion-microstructure relationship in the heat-affected zone of a steel plate with Mg deoxidation after high-heat-input welding. Metals, 2018, 8(12): 1027 doi: 10.3390/met8121027
    [4] Cai Z Y, Kong H. Inclusion and microstructure characteristics in a steel sample with TiO2 nanoparticle addition and Mg treatment. Metals, 2019, 9(2): 171 doi: 10.3390/met9020171
    [5] Li J, Wa ng, H, Qu S Y, et al. Effect of welding thermal cycle parameters on the microstructure and properties in the heat affected zone of steel EH40 for high heat input welding. J Univ Sci Technol Beijing, 2012, 34(7): 788

    李靜, 王華, 曲圣昱, 等. 焊接熱循環參數對大線能量焊接用鋼EH40熱影響區組織和性能的影響. 北京科技大學學報, 2012, 34(7):788
    [6] Takamura J, Mizoguchi S. Roles of oxides in steel performance—Metallurgy of oxides in steels 1// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 591
    [7] Mizoguchi S, Takamura J. Control of oxide as inculants—Metallurgy of oxides in steels 2// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 598
    [8] Sawai T, Wakooh M, Ueshima Y, et al. Effect of Zr on the precipitation of MnS in low carbon steels—Metallurgy of oxides in steels 3// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 605
    [9] Ogibayashi S, Yamaguchi K, Hirai H, et al. The feature of oxides in Ti-deoxidized steel—Metallurgy of oxides in steel 4 // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 612
    [10] Shi M L, Duan G S. Application and progress of the oxides metallurgy technology. Henan Metall, 2010, 18(5): 1 doi: 10.3969/j.issn.1006-3129.2010.05.001

    史美倫, 段貴生. 氧化物冶金技術應用及進展. 河南冶金, 2010, 18(5):1 doi: 10.3969/j.issn.1006-3129.2010.05.001
    [11] Nagahara M, Fukami H. 530 N/mm3 tensile strength grade steel plate for multi-purpose gas carrier. Nippon Steel Tech Rep, 2004, 5: 19
    [12] Yang C F, Chai F, Su H. Study of ship hull steel for high heat input welding. Shanghai Met, 2010, 32(1): 1 doi: 10.3969/j.issn.1001-7208.2010.01.001

    楊才福, 柴鋒, 蘇航. 大線能量焊接船體鋼的研究. 上海金屬, 2010, 32(1):1 doi: 10.3969/j.issn.1001-7208.2010.01.001
    [13] Kimura T, Sumi H, Kitani Y. High tensile strength steel plate and welding consumables for architectural construction with excellent toughness in welded joint. JFE Tech Rep, 2005, 5: 45
    [14] Yang J, Zhu K, Wang C, et al. Progress in oxide metallurgy for development of steel plates for high heat input welding // Proceedings of the 15th Annual Meeting on Steelmaking. Xiamen, 2008: 568

    楊健, 祝凱, 王聰, 等. 改善厚板大線能量焊接性能的氧化物冶金的研究進展 // 第十五屆全國煉鋼學術會議論文集. 廈門, 2008: 568
    [15] Fu K J, Ji Y M, Wang J J, et al. Research progress on hull structural steels by high heat input welding. Angang Technol, 2011(6): 7 doi: 10.3969/j.issn.1006-4613.2011.06.002

    付魁軍, 及玉梅, 王佳驥, 等. 大線能量焊接用船體結構鋼的研究進展. 鞍鋼技術, 2011(6):7 doi: 10.3969/j.issn.1006-4613.2011.06.002
    [16] Shigeo O, Yoichiro K, Mitsuaki S, et al. 355?460 MPa yield point steel plates and welding consumables for large heat-input welding for giant container ships. Kobe Steel Eng Rep, 2002, 52(1): 2

    岡野重雄, 小林洋一郎, 柴田光明, 等. 大型コンテナ船用大入熱溶接型 YP355~460 MPa級鋼板及び溶接材料. 神戸製鋼技報, 2002, 52(1):2
    [17] Zheng W, Liu L, Li G Q, et al. Refinement mechanisms of inclusions in steel by Ti?Mg complex deoxidation. Chin J Eng, 2015, 37(7): 873

    鄭萬, 劉磊, 李光強, 等. Ti?Mg復合脫氧鋼中夾雜物細化機制. 工程科學學報, 2015, 37(7):873
    [18] Shen H J. Research on Control Technology for Super-Fine Inclusions in Low Carbon Steel[Dissertation]. Shenyang: Northeastern University, 2008

    沈海軍. 低碳鋼中超細夾雜物控制技術研究[學位論文]. 沈陽: 東北大學, 2008
    [19] Wang B X, Wu Z Z, Lou H N, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel. J Iron Steel Res, 2019, 31(2): 239

    王丙興, 武仲子, 婁號南, 等. 氧化物冶金工藝對EH36鋼HAZ組織性能的影響. 鋼鐵研究學報, 2019, 31(2):239
    [20] Deng X X, Wang X H, Jiang M, et al. Effect of inclusions on the formation of intra-granular acicular ferrite in steels containing rare earth elements. J Univ Sci Technol Beijing, 2012, 34(5): 535

    鄧小旋, 王新華, 姜敏, 等. 稀土處理鋼中夾雜物對晶內針狀鐵素體形成的影響. 北京科技大學學報, 2012, 34(5):535
    [21] Zhang P, Wang X S, Long J, et al. Development and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships // Proceedings of the Twenty-eighth International Ocean and Polar Engineering Conference. Sapporo, 2018: 1569
    [22] Zhu K, Yang J, Wang R Z, et al. Effect of Mg addition on inhibiting austenite grain growth in heat affected zones of Ti-bearing low carbon steels. J Iron Steel Res Int, 2011, 18(9): 60 doi: 10.1016/S1006-706X(12)60035-1
    [23] Wang B X, Zhu F X, Wang C, et al. Application of oxide metallurgy in high heat input welding steels. Iron Steel, 2019, 54(9): 12

    王丙興, 朱伏先, 王超, 等. 氧化物冶金在大線能量焊接用鋼中的應用. 鋼鐵, 2019, 54(9):12
    [24] Li W X, Guo H Y, Chen G, et al. Microstructure and properties of FCB weld joint of shipbuilding steel EH36 for high heat input welding. Electr Weld Mach, 2017, 47(8): 1

    李文曉, 郭慧英, 陳剛, 等. 大線能量焊接EH36船板鋼FCB焊接接頭組織與性能. 電焊機, 2017, 47(8):1
    [25] Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 doi: 10.2355/isijinternational.35.1027
    [26] Wang C. Microstructure and Properties Control of Oxide Metallurgical Steels for High Heat Input Welding and Its Production Technology Research[Dissertation]. Shenyang: Northeastern University, 2017

    王超. 氧化物冶金型大線能量焊接用鋼組織性能調控與生產工藝研究[學位論文]. 沈陽: 東北大學, 2017
    [27] Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti?Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534
    [28] Kim Y M, Lee H, Kim N J. Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A, 2008, 478(1-2): 361 doi: 10.1016/j.msea.2007.06.035
    [29] Sung H K, Sang S Y, Cha W, et al. Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels. Mater Sci Eng A, 2011, 528(9): 3350 doi: 10.1016/j.msea.2011.01.031
    [30] Li Y Y, Wu M F, Pu J. Study on microstructure and mechanical properties of FAB submerged arc weld for DH36 ship plate with different thickness. Hot Work Technol, 2017, 46(7): 232

    李遠遠, 吳銘方, 浦娟. 不同厚度DH36船用板FAB埋弧焊縫微觀組織及力學性能研究. 熱加工工藝, 2017, 46(7):232
    [31] Shu W, Wang X M, Li S R, et al. Nucleation and growth of intergranular acicular ferrite and its effect on grain refinement of the heat-affected-zone. Acta Metall Sinica, 2011, 47(4): 435

    舒瑋, 王學敏, 李書瑞, 等. 焊接熱影響區針狀鐵素體的形核長大及其對組織的細化作用. 金屬學報, 2011, 47(4):435
    [32] Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel. Acta Mater., 1999, 47(9): 2751 doi: 10.1016/S1359-6454(99)00114-7
    [33] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
    [34] Zhuo X J, Wang Y Q, Wang X H, et al. Thermodynamic calculation and MnS solubility of Mn?Ti oxide formation in Si?Mn?Ti deoxidized steel. J Iron Steel Res Int, 2010, 17(2): 10 doi: 10.1016/S1006-706X(10)60051-9
  • 加載中
圖(5) / 表(4)
計量
  • 文章訪問數:  2171
  • HTML全文瀏覽量:  1131
  • PDF下載量:  79
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-23
  • 刊出日期:  2020-11-25

目錄

    /

    返回文章
    返回