-
摘要: 采用數值模擬及熱態燃燒實驗方法,分析了3種不同集束氧槍末端幾何結構在常溫及高溫條件下的射流速度場及溫度場分布特性,并重點研究了常用槍位條件下射流動壓對熔池的沖擊形貌特點的影響. 研究結果表明,采用收束式約束集束氧槍可有效抑制射流能量向徑向的擴散,從而延長伴隨流高溫區長度,達到提高超音速射流核心段長度及熔池攪拌效果的目的.Abstract: Coherent lances have been playing an extremely important role in the process of supplying oxygen to an electrical arc furnace, which has been widely used in metallurgy, and its metallurgical and operational benefits have been well reported. When compared with the conventional supersonic oxygen lance, the coherent lance could increase the oxygen utilization rate, strengthen penetration ability, and achieve a good stirring effect. However, there was limited research about the flow field characteristics of a coherent jet using different restriction structures for a coherent lance tip. This paper analyzed velocity and temperature profiles at various parameters and conditions. Both numerical simulation and combustion experiment have been carried out to investigate the velocity and temperature profiles using three kinds of restriction structures at room and high ambient temperature conditions. Further, the impact diameter and depth of the molten bath have also been analyzed at a certain lance height. The result shows that the restriction structure could delay energy transmission in a radial direction, which enlarges a high-temperature zone in an axial direction, resulting in the increase of the velocity potential core length and the improvement of the mixing ability of the main oxygen jet.
-
Key words:
- coherent lance /
- flow field /
- numerical simulation /
- combustion experiment
-
表 1 數值模擬模型邊界條件
Table 1. Simulation boundary conditions
Lable Type Value Main oxygen jet Mass inlet/(kg·s?1) 0.9921 Mass fraction/% O2, 100 Temperature/K 298 Shrouding oxygen jet Mass inlet/(kg·s?1) 0.1190 Mass fraction/% O2, 100 Temperature/K 298 Shrouiding CH4 Mass inlet/(kg·s?1) 0.0595 Mass fraction/% CH4, 100 Temperature/K 298 Outlet Pressure/Pa 101325 Mass fraction/% O2, 23; N2,77 Temperature/K 298, 1700 表 2 氣相物化參數
Table 2. Parameters of the gas flow
Gas Viscosity/(kg·m?1·s?1) Thermal conductivity/(W·m?1·K?1) Oxygen gas 1.919×10?5 0.0246 CH4 1.087×10?5 0.0332 Air 1.789×10?5 0.0242 表 3 同心圓環截面處集束射流平均速度及平均溫度統計
Table 3. Average static temperature and axial velocity for various coherent lances
Lance 298 K 1700 K Average temperature/K Average axial velocity/(m·s?1) Average temperature/K Average axial velocity/(m·s?1) Conventional coherent lance 953 61 1355 90 Open restricted coherent lance 1531 102 1501 160 Flap restricted coherent lance 1980 212 1723 288 www.77susu.com -
參考文獻
[1] Zhou X B, Ersson M, Zhong L C, et al. Mathematical and physical simulation of a top blown converter. Steel Res Int, 2014, 85(2): 273 doi: 10.1002/srin.201300310 [2] Li Q, Li M M, Kuang S B, et al. Numerical simulation of the interaction between supersonic oxygen jets and molten slag-metal bath in steelmaking BOF process. Metall Mater Trans B, 2015, 46(3): 1494 doi: 10.1007/s11663-015-0292-3 [3] Asahara N, Naito K I, Kitagawa I, et al. Fundamental study on interaction between top blown jet and liquid bath. Steel Res Int, 2011, 82(5): 587 doi: 10.1002/srin.201100041 [4] Wang H, Zhu R, Lü M, et al. Numerical simulation of swirl-type lances in vanadium extraction process. J Univ Sci Technol Beijing, 2014, 36(1): 89王慧, 朱榮, 呂明, 等. 提釩用旋流氧槍噴頭的數值模擬. 北京科技大學學報, 2014, 36(1):89 [5] Alam M, Naser J, Brooks G, et al. Computational fluid dynamics modeling of supersonic coherent jets for electric arc furnace steelmaking process. Metall Mater Trans B, 2010, 41(6): 1354 doi: 10.1007/s11663-010-9436-7 [6] Sumi I, Kishimoto Y, Kikuchi Y, et al. Effect of high-temperature field on supersonic oxygen jet behavior. ISIJ Int, 2006, 46(9): 1312 doi: 10.2355/isijinternational.46.1312 [7] Tang G W, Chen Y C, Silaen A K, et al. Effects of fuel input on coherent jet length at various ambient temperatures. Appl Therm Eng, 2019, 153: 513 doi: 10.1016/j.applthermaleng.2019.03.019 [8] Liu F H, Sun D B, Zhu R, et al. Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding laval nozzle structure. Metall Mater Trans B, 2018, 49(4): 2050 doi: 10.1007/s11663-018-1272-1 [9] Odenthal H J, Bui P, Reifferscheid M, et al. Advanced design of burner/injector systems in electric arc furnaces (EAF)//4th Intern. Conf. on Modelling and Simulation of Metallurgical Processes in Steelmaking. Dusseldorf, 2011: 1 [10] Wei G S, Zhu R, Wu X T, et al. Study on the fluid flow characteristics of coherent jets with CO2 and O2 mixed injection in electric arc furnace steelmaking processes. Metall Mater Trans B, 2015, 46(3): 1405 doi: 10.1007/s11661-014-2715-1 [11] Papamoschou D, Roshko A. The compressible turbulent shear layer: an experimental study. J Fluid Mech, 1988, 197: 453 doi: 10.1017/S0022112088003325 [12] Launder B E, Spalding D B. The numerical computation of turbulent flows. Comput Meth Appl Mech Eng, 1974, 3(2): 269 doi: 10.1016/0045-7825(74)90029-2 -