<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

集束氧槍結構參數對射流流場分布特征的影響

魏光升 朱榮 陳書江 劉福海 董凱 姚柳潔

魏光升, 朱榮, 陳書江, 劉福海, 董凱, 姚柳潔. 集束氧槍結構參數對射流流場分布特征的影響[J]. 工程科學學報, 2020, 42(S): 76-82. doi: 10.13374/j.issn2095-9389.2020.03.20.s17
引用本文: 魏光升, 朱榮, 陳書江, 劉福海, 董凱, 姚柳潔. 集束氧槍結構參數對射流流場分布特征的影響[J]. 工程科學學報, 2020, 42(S): 76-82. doi: 10.13374/j.issn2095-9389.2020.03.20.s17
WEI Guang-sheng, ZHU Rong, CHENG Shu-jiang, LIU Fu-hai, DONG Kai, YAO Liu-jie. Flow field characteristics of a coherent jet using various lance tip structures[J]. Chinese Journal of Engineering, 2020, 42(S): 76-82. doi: 10.13374/j.issn2095-9389.2020.03.20.s17
Citation: WEI Guang-sheng, ZHU Rong, CHENG Shu-jiang, LIU Fu-hai, DONG Kai, YAO Liu-jie. Flow field characteristics of a coherent jet using various lance tip structures[J]. Chinese Journal of Engineering, 2020, 42(S): 76-82. doi: 10.13374/j.issn2095-9389.2020.03.20.s17

集束氧槍結構參數對射流流場分布特征的影響

doi: 10.13374/j.issn2095-9389.2020.03.20.s17
基金項目: 國家自然科學基金資助項目(51804028);中央高校基本科研業務資助項目(FRF-TP-17-007A1)
詳細信息
    通訊作者:

    E-mail:liufuhaisteel@126.com

  • 中圖分類號: TG142.71

Flow field characteristics of a coherent jet using various lance tip structures

More Information
  • 摘要: 采用數值模擬及熱態燃燒實驗方法,分析了3種不同集束氧槍末端幾何結構在常溫及高溫條件下的射流速度場及溫度場分布特性,并重點研究了常用槍位條件下射流動壓對熔池的沖擊形貌特點的影響. 研究結果表明,采用收束式約束集束氧槍可有效抑制射流能量向徑向的擴散,從而延長伴隨流高溫區長度,達到提高超音速射流核心段長度及熔池攪拌效果的目的.

     

  • 圖  1  不同結構氧槍參數截面示意圖。(a)收束式約束集束氧槍;(b)直管式約束集束氧槍;(c)傳統集束氧槍;(d)傳統超音速氧槍(單位:mm)

    Figure  1.  Schematic of the different lance structures: (a) flap restricted coherent lance; (b) open restricted coherent lance; (c) conventional coherent lance; (d) conventional lance (unit: mm)

    圖  2  計算域網格結構圖

    Figure  2.  Simulation model of the computational domain

    圖  3  主氧射流軸線速度分布模式。(a)環境溫度為298 K;(b)環境溫度為1700 K

    Figure  3.  Axial velocity of main oxygen jet at centerline: (a) the ambient temperature is 298 K; (b) ambient temperature is 1700 K

    圖  4  不同環境溫度下,主氧射流軸線氧氣含量分布模式。(a)298 K;(b)1700 K

    Figure  4.  Oxygen mass fraction of main oxygen jet at centerline at different ambient temperatures: (a) 298 K; (b) 1700 K

    圖  5  不同環境溫度下,主氧射流徑向動壓分布模式。(a)298 K;(b)1700 K

    Figure  5.  Dynamic pressure of main oxygen jet in radial direction at different ambient temperatures: (a) 298 K; (b) 1700 K

    表  1  數值模擬模型邊界條件

    Table  1.   Simulation boundary conditions

    LableTypeValue
    Main oxygen jetMass inlet/(kg·s?1)0.9921
    Mass fraction/%O2, 100
    Temperature/K298
    Shrouding oxygen jetMass inlet/(kg·s?1)0.1190
    Mass fraction/%O2, 100
    Temperature/K298
    Shrouiding CH4Mass inlet/(kg·s?1)0.0595
    Mass fraction/%CH4, 100
    Temperature/K298
    OutletPressure/Pa101325
    Mass fraction/%O2, 23; N2,77
    Temperature/K298, 1700
    下載: 導出CSV

    表  2  氣相物化參數

    Table  2.   Parameters of the gas flow

    GasViscosity/(kg·m?1·s?1)Thermal conductivity/(W·m?1·K?1)
    Oxygen gas1.919×10?50.0246
    CH41.087×10?50.0332
    Air1.789×10?50.0242
    下載: 導出CSV

    表  3  同心圓環截面處集束射流平均速度及平均溫度統計

    Table  3.   Average static temperature and axial velocity for various coherent lances

    Lance298 K1700 K
    Average temperature/KAverage axial velocity/(m·s?1)Average temperature/KAverage axial velocity/(m·s?1)
    Conventional coherent lance95361135590
    Open restricted coherent lance15311021501160
    Flap restricted coherent lance19802121723288
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhou X B, Ersson M, Zhong L C, et al. Mathematical and physical simulation of a top blown converter. Steel Res Int, 2014, 85(2): 273 doi: 10.1002/srin.201300310
    [2] Li Q, Li M M, Kuang S B, et al. Numerical simulation of the interaction between supersonic oxygen jets and molten slag-metal bath in steelmaking BOF process. Metall Mater Trans B, 2015, 46(3): 1494 doi: 10.1007/s11663-015-0292-3
    [3] Asahara N, Naito K I, Kitagawa I, et al. Fundamental study on interaction between top blown jet and liquid bath. Steel Res Int, 2011, 82(5): 587 doi: 10.1002/srin.201100041
    [4] Wang H, Zhu R, Lü M, et al. Numerical simulation of swirl-type lances in vanadium extraction process. J Univ Sci Technol Beijing, 2014, 36(1): 89

    王慧, 朱榮, 呂明, 等. 提釩用旋流氧槍噴頭的數值模擬. 北京科技大學學報, 2014, 36(1):89
    [5] Alam M, Naser J, Brooks G, et al. Computational fluid dynamics modeling of supersonic coherent jets for electric arc furnace steelmaking process. Metall Mater Trans B, 2010, 41(6): 1354 doi: 10.1007/s11663-010-9436-7
    [6] Sumi I, Kishimoto Y, Kikuchi Y, et al. Effect of high-temperature field on supersonic oxygen jet behavior. ISIJ Int, 2006, 46(9): 1312 doi: 10.2355/isijinternational.46.1312
    [7] Tang G W, Chen Y C, Silaen A K, et al. Effects of fuel input on coherent jet length at various ambient temperatures. Appl Therm Eng, 2019, 153: 513 doi: 10.1016/j.applthermaleng.2019.03.019
    [8] Liu F H, Sun D B, Zhu R, et al. Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding laval nozzle structure. Metall Mater Trans B, 2018, 49(4): 2050 doi: 10.1007/s11663-018-1272-1
    [9] Odenthal H J, Bui P, Reifferscheid M, et al. Advanced design of burner/injector systems in electric arc furnaces (EAF)//4th Intern. Conf. on Modelling and Simulation of Metallurgical Processes in Steelmaking. Dusseldorf, 2011: 1
    [10] Wei G S, Zhu R, Wu X T, et al. Study on the fluid flow characteristics of coherent jets with CO2 and O2 mixed injection in electric arc furnace steelmaking processes. Metall Mater Trans B, 2015, 46(3): 1405 doi: 10.1007/s11661-014-2715-1
    [11] Papamoschou D, Roshko A. The compressible turbulent shear layer: an experimental study. J Fluid Mech, 1988, 197: 453 doi: 10.1017/S0022112088003325
    [12] Launder B E, Spalding D B. The numerical computation of turbulent flows. Comput Meth Appl Mech Eng, 1974, 3(2): 269 doi: 10.1016/0045-7825(74)90029-2
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  831
  • HTML全文瀏覽量:  582
  • PDF下載量:  32
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-20
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回