-
摘要: 針對某廠三流異型坯中間包,建立了相似比為1∶2的水模型,使用F曲線對不同控流裝置下的中間包流場特性進行分析與優化。實驗內容包括原型控流裝置、湍流抑制器無擋壩、湍流抑制器加擋壩組合。結果表明,原型中間包中部水口存在短路流,水口間流動的差異性較大,可能導致三個鑄流的鑄坯溫度和潔凈度不均勻,進而發生同爐次各鑄坯質量穩定性差的問題。采用湍流抑制器無擋壩控流裝置,湍流抑制器導流孔夾角為60°時,短路流出現在中部;導流孔夾角為86°時,無短路流,各流一致性變好;導流孔夾角為110°時,兩側水口出現短路流,各流一致性優于前兩個角度。中間包的各流一致性與死區比例并無相關性,一致性良好的中間包流場,其死區比例并不一定小。優化后的中間包湍流抑制器導流孔夾角為110°,擋壩距離中間包中心2400 mm,中間包內無短路流,1#、2#水口一致性最佳,死區由17.89 %減小到9.67 %,減小率為11.25 %,F曲線標準差最大值由0.3減小到0.016。Abstract: The water model with a similarity ratio of 1∶2 was established for a three-strand beam blank tundish. The molten steel flowing character was researched in different flow control devices by using the F-curve, and the flow field of the tundish was optimized. The volume fractions of dead region, plug flow and well-mixed flow are calculated. The standard deviation of the stagnation time of 1, 2 and 3 flow and the maximum value of standard deviation function of F-curve were used to evaluate the dispersion of each flow. Three cases were considered during the experiments, i.e, prototype flow control device, turbulence inhibitor without dams combination, turbulence inhibitor and dams combination. The results show that short circuit flow exists in the middle nozzle of the prototype tundish, and poor consistency between nozzles, which may lead to the uneven temperature and cleanness of the three-strand beam blanks, leading to different quality of different beam blanks in one heat. Using the turbulence inhibitor without dams combination, the short circuit flow appears in the middle of tundish with the angle of diversion holes being 60°. When the angle is 86°, there is no short circuit flow, and the consistency between strands becomes better. When the angle is 110°, the short circuit flow appears in the two sides of the tundish nozzle with the best consistency between strands. There is no correlation between the consistency of the tundish strands and the dead volume fraction. When the consistency of the tundish strands is good, the dead volume fraction may not be small. After optimization, the angle of the diversion hole of the tundish turbulence inhibitor is 110°, the dam is 2400 mm away from the tundish center. There is no short-circuit flow, the consistency of 1# and 2# nozzles is the best, the dead volume fraction is reduced to 9.67% from 17.89%, and the reduction rate is 11.25%. The maximum standard deviation of the F-curve is reduced to 0.016 from 0.3.
-
Key words:
- multi-strand tundish /
- beam blank /
- physical simulation /
- F-curve /
- flow control device
-
表 1 中間包不同控流裝置實驗方案
Table 1. Schemes of different flow control devices
Scheme The angle of diversion holes in turbulence inhibitor/(°) Distance between dam and tundish center/mm A2 60 1306 A0 60 — B0 86 — C0 110 — B1 86 500 B2 86 1306 B3 86 1900 B4 86 2400 C1 110 500 C2 110 1306 C3 110 1900 C4 110 2400 表 2 原型中間包流場特性
Table 2. Flow characteristics of scheme A2
Scheme Dead zone ratio/% Plug flow ratio/% Mixed flow ratio/% σ1,2,3 σF,max A2 20.92 8.45 70.63 13.46 0.0300 表 3 不同湍流抑制器流場特性
Table 3. Flow characteristics of different turbulence inhibitors
Scheme Dead zone
ratio/%Plug flow
ratio/%Mixed flow
ratio/%σ1,2,3 σF,max A0 17.89 8.94 73.17 14.66 0.0207 B0 17.24 8.87 73.89 9.36 0.0138 C0 16.43 10.07 73.49 4.94 0.0103 表 4 不同控流裝置組合下流場特性
Table 4. Flow characteristics of different flow control devices
Scheme Dead zone ratio /% Plug flow ratio /% Mixed flow ratio /% σ1,2,3 σF,max Prototype 20.92 8.45 70.63 13.46 0.0300 B1 14.90 9.12 75.98 8.42 0.0044 B2 20.90 7.75 71.35 10.33 0.0047 B3 16.77 10.74 72.49 16.04 0.0185 B4 11.20 11.55 77.25 17.54 0.0148 C1 20.13 10.28 69.60 7.46 0.0122 C2 19.39 8.31 72.30 5.31 0.0108 C3 22.07 9.04 68.89 3.55 0.0047 C4 9.67 14.28 76.04 11.50 0.0162 www.77susu.com -
參考文獻
[1] Zhong L C, Wang M A, Chen B Y, et al. Flow control in six-strand billet continuous casting tundish with different configurations. J Iron Steel Res Int, 2010, 17(7): 7 doi: 10.1016/S1006-706X(10)60148-3 [2] Cwudziński A. Numerical, physical, and industrial experiments of liquid steel mixture in one strand slab tundish with flow control devices. Steel Res Int, 2014, 85(4): 623 doi: 10.1002/srin.201300079 [3] Yang S F, Li J S, Jiang J, et al. Fluid flow in large-capacity horizontal continuous casting tundishes. Int J Miner Metall Mater, 2010, 17(3): 262 doi: 10.1007/s12613-010-0303-y [4] López-Ramirez S, Palafox-Ramos J, Morales R D, et al. Modeling study of the influence of turbulence inhibitors on the molten steel flow, tracer dispersion, and inclusion trajectories in tundishes. Metall Mater Trans B, 2001, 32(4): 615 doi: 10.1007/s11663-001-0117-4 [5] Bao Y P, Wang M. Tundish Metallurgy. Beijing: Metallurgical Industry Press, 2019包燕平, 王敏. 中間包冶金學. 北京: 冶金工業出版社, 2019 [6] Cai K K. Quality Control of Continuously Cast Slab. Beijing: Metallurgical Industry Press, 2010蔡開科. 連鑄坯質量控制. 北京: 冶金工程出版社, 2010 [7] Li Y H, Zhao L H, Bao Y P, et al. Flow Characteristic of molten steel in slab casting tundishes. J Univ Sci Technol Beijing, 2014, 36(1): 21李怡宏, 趙立華, 包燕平, 等. 板坯中間包內鋼液流動特性. 北京科技大學學報, 2014, 36(1):21 [8] Wen G H, Tang P, Huang Y F. Improvement of tundish shape and optimization of flow control devices for sequence casting heavy steel ingots. Int J Miner Metall Mater, 2012, 19(1): 15 doi: 10.1007/s12613-012-0509-2 [9] Kumar A, Mazumdar D, Koria S C. Modeling of fluid flow and residence time distribution in a four-strand tundish for enhancing inclusion removal. ISIJ Int, 2008, 48(1): 38 doi: 10.2355/isijinternational.48.38 [10] Sahai Y, Emi T. Melt flow characterization in continuous casting tundishes. ISIJ Int, 1996, 36(6): 667 doi: 10.2355/isijinternational.36.667 [11] Zheng S G, Zhu M Y. Analysis model for flow characteristics in multi-strand continuous casting tundish. Acta Metall Sin, 2005, 41(10): 67鄭淑國, 朱苗勇. 多流連鑄中間包內鋼液流動特性的分析模型. 金屬學報, 2005, 41(10):67 [12] Zheng S G, Zhu M Y. Criteria on the similarity of melt flow among strands in multi-strand continuous casting tundish. Chin J Process Eng, 2006, 6(4): 522 doi: 10.3321/j.issn:1009-606X.2006.04.002鄭淑國, 朱苗勇. 多流連鑄中間包各流流動特性一致性的判別. 過程工程學報, 2006, 6(4):522 doi: 10.3321/j.issn:1009-606X.2006.04.002 [13] Lei H, Zhao Y, Bao J L, et al. Whole analysis approach for residue time distribution curve in multi-strand continuous casting tundish. Acta Metall Sin, 2010, 46(9): 1109 doi: 10.3724/SP.J.1037.2010.00220雷洪, 趙巖, 鮑家琳, 等. 多流連鑄中間包停留時間分布曲線總體分析方法. 金屬學報, 2010, 46(9):1109 doi: 10.3724/SP.J.1037.2010.00220 [14] Lei H, Zhao Y, Xing G C, et al. Use of a comprehensive analytical approach for water modeling of an asymmetrical two-strand tundish. J Northeast Univ (Nat Sci) , 2011, 32(4): 537雷洪, 趙巖, 邢國成, 等. 總體分析法在非對稱兩流中間包水模型中的應用. 東北大學學報(自然科學版), 2011, 32(4):537 [15] Pan H W, Cheng S S. Mathematical model of flow characterization in multi-strand continuous casting tundishes. J Univ Sci Technol Beijing, 2009, 31(7): 815 doi: 10.3321/j.issn:1001-053X.2009.07.002潘宏偉, 程樹森. 多流中間包流動特征的數學模型. 北京科技大學學報, 2009, 31(7):815 doi: 10.3321/j.issn:1001-053X.2009.07.002 [16] Zhu M M, Wen G H, Tang P, et al. Analytical method for flow pattern in multi-strand tundish. Chin J Process Eng, 2008, 8(S1): 41祝明妹, 文光華, 唐萍, 等. 多流中間包內流體流動模式的分析方法. 過程工程學報, 2008, 8(S1):41 [17] Cui H, Liu Y, Li D X. Fluid flow characterization in asymmetric tundish. ISIJ Int, 2015, 55(12): 2604 doi: 10.2355/isijinternational.ISIJINT-2015-409 [18] Li D, Cui H, Liu Y, et al. A new method based on the f-curve for characterizing fluid flow in continuous casting tundishes. Metall Mater Trans B, 2016, 47(2): 1237 doi: 10.1007/s11663-015-0571-z [19] Li D X, Cui H. A method for characterizing the flow fluid in a multi-strand tundish. Chin J Eng, 2016, 38(1): 41李東俠, 崔衡. 多流中間包鋼液流動特性分析方法. 工程科學學報, 2016, 38(1):41 [20] Tian Y H, Bao Y P, Li Y H, et al. Study on optimization of the baffle for two-strand slab caster’s 80 t tundish. Iron Steel Vanadium Titanium, 2013, 34(2): 67 doi: 10.7513/j.issn.1004-7638.2013.02.013田永華, 包燕平, 李怡宏, 等. 80 t兩流板坯連鑄中間包擋墻結構優化研究. 鋼鐵釩鈦, 2013, 34(2):67 doi: 10.7513/j.issn.1004-7638.2013.02.013 [21] Xiao X G, Xie Y G. Metallurgical Reaction Engineering Foundation. Beijing: Metallurgical Industry Press, 1997肖興國, 謝蘊國. 冶金反應工程學基礎. 北京: 冶金工業出版社, 1997 -