<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于F曲線的中間包流場優化

王汝棟 蘇旺 崔衡 嚴進寶 劉建華 王福良

王汝棟, 蘇旺, 崔衡, 嚴進寶, 劉建華, 王福良. 基于F曲線的中間包流場優化[J]. 工程科學學報, 2020, 42(S): 95-101. doi: 10.13374/j.issn2095-9389.2020.03.20.s14
引用本文: 王汝棟, 蘇旺, 崔衡, 嚴進寶, 劉建華, 王福良. 基于F曲線的中間包流場優化[J]. 工程科學學報, 2020, 42(S): 95-101. doi: 10.13374/j.issn2095-9389.2020.03.20.s14
WANG Ru-dong, SU Wang, CUI Heng, YAN Jin-bao, LIU Jian-hua, WANG Fu-liang. Optimization of the tundish flow field based on F-curve[J]. Chinese Journal of Engineering, 2020, 42(S): 95-101. doi: 10.13374/j.issn2095-9389.2020.03.20.s14
Citation: WANG Ru-dong, SU Wang, CUI Heng, YAN Jin-bao, LIU Jian-hua, WANG Fu-liang. Optimization of the tundish flow field based on F-curve[J]. Chinese Journal of Engineering, 2020, 42(S): 95-101. doi: 10.13374/j.issn2095-9389.2020.03.20.s14

基于F曲線的中間包流場優化

doi: 10.13374/j.issn2095-9389.2020.03.20.s14
基金項目: 國家自然科學基金資助項目(U1860106)
詳細信息
    通訊作者:

    E-mail:cuiheng@ustb.edu.cn

  • 中圖分類號: TF769.9

Optimization of the tundish flow field based on F-curve

More Information
  • 摘要: 針對某廠三流異型坯中間包,建立了相似比為1∶2的水模型,使用F曲線對不同控流裝置下的中間包流場特性進行分析與優化。實驗內容包括原型控流裝置、湍流抑制器無擋壩、湍流抑制器加擋壩組合。結果表明,原型中間包中部水口存在短路流,水口間流動的差異性較大,可能導致三個鑄流的鑄坯溫度和潔凈度不均勻,進而發生同爐次各鑄坯質量穩定性差的問題。采用湍流抑制器無擋壩控流裝置,湍流抑制器導流孔夾角為60°時,短路流出現在中部;導流孔夾角為86°時,無短路流,各流一致性變好;導流孔夾角為110°時,兩側水口出現短路流,各流一致性優于前兩個角度。中間包的各流一致性與死區比例并無相關性,一致性良好的中間包流場,其死區比例并不一定小。優化后的中間包湍流抑制器導流孔夾角為110°,擋壩距離中間包中心2400 mm,中間包內無短路流,1#、2#水口一致性最佳,死區由17.89 %減小到9.67 %,減小率為11.25 %,F曲線標準差最大值由0.3減小到0.016。

     

  • 圖  1  中間包結構示意圖

    Figure  1.  Schematics of the tundish structure

    圖  2  水模型實驗裝置示意圖

    Figure  2.  Schematics of the water model experimental device

    圖  3  擋壩結構示意圖(單位:mm)

    Figure  3.  Schematics of dams in tundish (unit: mm)

    圖  4  湍流抑制器結構示意圖

    Figure  4.  Schematics of the turbulence inhibitor in tundish

    圖  5  原型中間包RTD曲線。(a) E曲線; (b) F曲線

    Figure  5.  RTD curves of the prototype tundish: (a) E-curve; (b) F-curve

    圖  6  不同湍流抑制器方案下的E曲線和F曲線

    Figure  6.  E-curve and F-curve of different turbulence inhibitors

    圖  7  選取控流裝置下的E曲線和F曲線

    Figure  7.  E-curve and F-curve of the selected flow control device

    表  1  中間包不同控流裝置實驗方案

    Table  1.   Schemes of different flow control devices

    SchemeThe angle of diversion holes in turbulence inhibitor/(°)Distance between dam and tundish center/mm
    A2601306
    A060
    B086
    C0110
    B186500
    B2861306
    B3861900
    B4862400
    C1110500
    C21101306
    C31101900
    C41102400
    下載: 導出CSV

    表  2  原型中間包流場特性

    Table  2.   Flow characteristics of scheme A2

    SchemeDead zone ratio/%Plug flow ratio/%Mixed flow ratio/%σ1,2,3σF,max
    A220.928.4570.6313.460.0300
    下載: 導出CSV

    表  3  不同湍流抑制器流場特性

    Table  3.   Flow characteristics of different turbulence inhibitors

    SchemeDead zone
    ratio/%
    Plug flow
    ratio/%
    Mixed flow
    ratio/%
    σ1,2,3σF,max
    A017.898.9473.1714.660.0207
    B017.248.8773.899.360.0138
    C016.4310.0773.494.940.0103
    下載: 導出CSV

    表  4  不同控流裝置組合下流場特性

    Table  4.   Flow characteristics of different flow control devices

    SchemeDead zone ratio /%Plug flow ratio /%Mixed flow ratio /%σ1,2,3σF,max
    Prototype20.928.4570.6313.460.0300
    B114.909.1275.988.420.0044
    B220.907.7571.3510.330.0047
    B316.7710.7472.4916.040.0185
    B411.2011.5577.2517.540.0148
    C120.1310.2869.607.460.0122
    C219.398.3172.305.310.0108
    C322.079.0468.893.550.0047
    C49.6714.2876.0411.500.0162
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhong L C, Wang M A, Chen B Y, et al. Flow control in six-strand billet continuous casting tundish with different configurations. J Iron Steel Res Int, 2010, 17(7): 7 doi: 10.1016/S1006-706X(10)60148-3
    [2] Cwudziński A. Numerical, physical, and industrial experiments of liquid steel mixture in one strand slab tundish with flow control devices. Steel Res Int, 2014, 85(4): 623 doi: 10.1002/srin.201300079
    [3] Yang S F, Li J S, Jiang J, et al. Fluid flow in large-capacity horizontal continuous casting tundishes. Int J Miner Metall Mater, 2010, 17(3): 262 doi: 10.1007/s12613-010-0303-y
    [4] López-Ramirez S, Palafox-Ramos J, Morales R D, et al. Modeling study of the influence of turbulence inhibitors on the molten steel flow, tracer dispersion, and inclusion trajectories in tundishes. Metall Mater Trans B, 2001, 32(4): 615 doi: 10.1007/s11663-001-0117-4
    [5] Bao Y P, Wang M. Tundish Metallurgy. Beijing: Metallurgical Industry Press, 2019

    包燕平, 王敏. 中間包冶金學. 北京: 冶金工業出版社, 2019
    [6] Cai K K. Quality Control of Continuously Cast Slab. Beijing: Metallurgical Industry Press, 2010

    蔡開科. 連鑄坯質量控制. 北京: 冶金工程出版社, 2010
    [7] Li Y H, Zhao L H, Bao Y P, et al. Flow Characteristic of molten steel in slab casting tundishes. J Univ Sci Technol Beijing, 2014, 36(1): 21

    李怡宏, 趙立華, 包燕平, 等. 板坯中間包內鋼液流動特性. 北京科技大學學報, 2014, 36(1):21
    [8] Wen G H, Tang P, Huang Y F. Improvement of tundish shape and optimization of flow control devices for sequence casting heavy steel ingots. Int J Miner Metall Mater, 2012, 19(1): 15 doi: 10.1007/s12613-012-0509-2
    [9] Kumar A, Mazumdar D, Koria S C. Modeling of fluid flow and residence time distribution in a four-strand tundish for enhancing inclusion removal. ISIJ Int, 2008, 48(1): 38 doi: 10.2355/isijinternational.48.38
    [10] Sahai Y, Emi T. Melt flow characterization in continuous casting tundishes. ISIJ Int, 1996, 36(6): 667 doi: 10.2355/isijinternational.36.667
    [11] Zheng S G, Zhu M Y. Analysis model for flow characteristics in multi-strand continuous casting tundish. Acta Metall Sin, 2005, 41(10): 67

    鄭淑國, 朱苗勇. 多流連鑄中間包內鋼液流動特性的分析模型. 金屬學報, 2005, 41(10):67
    [12] Zheng S G, Zhu M Y. Criteria on the similarity of melt flow among strands in multi-strand continuous casting tundish. Chin J Process Eng, 2006, 6(4): 522 doi: 10.3321/j.issn:1009-606X.2006.04.002

    鄭淑國, 朱苗勇. 多流連鑄中間包各流流動特性一致性的判別. 過程工程學報, 2006, 6(4):522 doi: 10.3321/j.issn:1009-606X.2006.04.002
    [13] Lei H, Zhao Y, Bao J L, et al. Whole analysis approach for residue time distribution curve in multi-strand continuous casting tundish. Acta Metall Sin, 2010, 46(9): 1109 doi: 10.3724/SP.J.1037.2010.00220

    雷洪, 趙巖, 鮑家琳, 等. 多流連鑄中間包停留時間分布曲線總體分析方法. 金屬學報, 2010, 46(9):1109 doi: 10.3724/SP.J.1037.2010.00220
    [14] Lei H, Zhao Y, Xing G C, et al. Use of a comprehensive analytical approach for water modeling of an asymmetrical two-strand tundish. J Northeast Univ (Nat Sci), 2011, 32(4): 537

    雷洪, 趙巖, 邢國成, 等. 總體分析法在非對稱兩流中間包水模型中的應用. 東北大學學報(自然科學版), 2011, 32(4):537
    [15] Pan H W, Cheng S S. Mathematical model of flow characterization in multi-strand continuous casting tundishes. J Univ Sci Technol Beijing, 2009, 31(7): 815 doi: 10.3321/j.issn:1001-053X.2009.07.002

    潘宏偉, 程樹森. 多流中間包流動特征的數學模型. 北京科技大學學報, 2009, 31(7):815 doi: 10.3321/j.issn:1001-053X.2009.07.002
    [16] Zhu M M, Wen G H, Tang P, et al. Analytical method for flow pattern in multi-strand tundish. Chin J Process Eng, 2008, 8(S1): 41

    祝明妹, 文光華, 唐萍, 等. 多流中間包內流體流動模式的分析方法. 過程工程學報, 2008, 8(S1):41
    [17] Cui H, Liu Y, Li D X. Fluid flow characterization in asymmetric tundish. ISIJ Int, 2015, 55(12): 2604 doi: 10.2355/isijinternational.ISIJINT-2015-409
    [18] Li D, Cui H, Liu Y, et al. A new method based on the f-curve for characterizing fluid flow in continuous casting tundishes. Metall Mater Trans B, 2016, 47(2): 1237 doi: 10.1007/s11663-015-0571-z
    [19] Li D X, Cui H. A method for characterizing the flow fluid in a multi-strand tundish. Chin J Eng, 2016, 38(1): 41

    李東俠, 崔衡. 多流中間包鋼液流動特性分析方法. 工程科學學報, 2016, 38(1):41
    [20] Tian Y H, Bao Y P, Li Y H, et al. Study on optimization of the baffle for two-strand slab caster’s 80 t tundish. Iron Steel Vanadium Titanium, 2013, 34(2): 67 doi: 10.7513/j.issn.1004-7638.2013.02.013

    田永華, 包燕平, 李怡宏, 等. 80 t兩流板坯連鑄中間包擋墻結構優化研究. 鋼鐵釩鈦, 2013, 34(2):67 doi: 10.7513/j.issn.1004-7638.2013.02.013
    [21] Xiao X G, Xie Y G. Metallurgical Reaction Engineering Foundation. Beijing: Metallurgical Industry Press, 1997

    肖興國, 謝蘊國. 冶金反應工程學基礎. 北京: 冶金工業出版社, 1997
  • 加載中
圖(7) / 表(4)
計量
  • 文章訪問數:  745
  • HTML全文瀏覽量:  706
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-20
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回