Effect of continuous-casting parameters on carbon segregation in SWRH82B high-carbon steel
-
摘要: 高碳鋼連鑄生產技術工藝優化是當前連鑄技術研究的主要內容之一。針對國內某鋼廠SWRH82B高碳鋼生產過程中出現碳偏析、網狀滲碳體組織缺陷的問題,采用數值模擬與實驗相結合的方法,利用Fluent軟件建立了八機八流連鑄機凝固傳熱模型,數值模擬計算凝固傳熱特征;研究了八機八流連鑄機在不同澆注速度、過熱度和末端電磁攪拌參數條件下對SWRH82B高碳鋼鑄坯碳偏析和夾雜物的影響;分析了SWRH82B高碳鋼連鑄過程中的主要要素與組織性能之間的關系。研究結果表明:鑄坯中心碳偏析是網狀滲碳體主要誘導因素,通過調整過熱度和澆注速度有利于促進鋼液成分的均勻化,降低夾雜物含量;當過熱度降低至25 ℃,澆注速度提高至2 m·min?1,鑄坯中心平均碳偏析指數由1.17降低為1.11,索氏體化率達到89%,網狀滲碳體級別由四級下降到一級,基本消除C類夾雜物;通過設置末端電磁攪拌參數為電流370 A、頻率7 Hz時,碳偏析指數最低值下降到1.04。通過優化連鑄生產工藝參數,解決了企業SWRH82B高碳鋼生產過程中的缺陷,為高碳鋼的高質量生產提供理論與實踐支撐。Abstract: Optimization of the continuous-casting production technology for high-carbon steel is one of the most important areas of research related to the steelmaking process. This article aims to address the problems of carbon segregation and reticulated cementite defects in the production process of SWRH82B high-carbon steel in a Chinese steel plant. In this study, Fluent software was used to perform a numerical simulation combined with experimentation to establish a heat-transfer model for the solidification of an eight-strand continuous caster. We numerically calculated the heat-transfer characteristics of the solidification and studied the effect of different parameters on the carbon segregation and inclusions of SWRH82B high-carbon steel, including casting speed, degree of superheating, and final-electromagnetic stirring of the eight-strand continuous caster. We also analyzed the relationship between the main elements during the continuous-casting process of the SWRH82B high-carbon steel and its microstructure and properties. The results indicate that carbon segregation in the center of the billet was the main cause of reticulated cementite. The degree of superheating and casting speed were then optimized, which promoted the homogenization of the components of liquid steel and reduced the inclusion content. When the degree of superheating was reduced to 25 ℃ and the casting speed was increased to 2 m·min?1, the carbon segregation index of the billet was reduced from 1.17 to 1.11, the sorbite rate was 89%, the cementite network grade decreased from 4 to 1, and the C inclusions were substantially eliminated. When the end electromagnetic stirring current was set to 370 A and the frequency to 7 Hz, the carbon segregation index decreased to its lowest value of 1.04. The defects occurring in the production process of SWRH82B high-carbon steel were addressed by optimizing the continuous-casting process parameters, which provides theoretical and practical support for the high-quality production of high-carbon steel.
-
Key words:
- high-carbon steel /
- continuous casting /
- cementite network /
- center segregation /
- numerical simulation
-
表 1 連鑄機主要參數
Table 1. Main parameters of continuous-casting machine
Caster type Flow number Radius / m Metallurgical length / m Flow spacing / mm Arc 8 10 30.6 1250 Lengths / mm Casting speeds / (m?min?1) Electromagnetic stirring Straightening method Slab cooling mode 6000?12000 3.2 F-EMS Continuous straightening Water-cooling + air-vapor cooling 表 2 82B盤條化學成分(質量分數)
Table 2. Chemical composition of 82B wire rods
% C Si Mn S P Cr 0.82 0.23 0.75 0.005 0.016 0.258 表 3 82B試樣的力學性能
Table 3. Mechanical properties of 82B samples
Sample Tensile strength /
MPaElongation after
fracture / %Area reduction /
%Sample 1 1200 18 41 Sample 2 1230 17 33 Sample 3 1220 19 37 Sample 4 1200 18 34 Sample 5 1210 17 36 表 4 碳偏析指數
Table 4. Carbon segregation index
Sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Segregation index 1.15 1.17 1.18 1.17 1.16 表 5 標準κ–ε雙方程模型中的經驗系數
Table 5. Empirical coefficient values in the standard κ–ε dual-equation model
Cμ C1 C2 ${\sigma _{\kappa} }$ ${\sigma _{\rm{e}}}$ 0.09 1.44 1.92 1.0 1.3 www.77susu.com -
參考文獻
[1] Li P, Wang L, Zhou Q F. Formation reasons and countermeasures of cementite network in the center of 82B wire rods. J Iron Steel Res, 2014, 26(9): 33李平, 王雷, 周青峰. 82B中心網狀滲碳體產生原因及改善方法. 鋼鐵研究學報, 2014, 26(9):33 [2] Zhang Y Y, Liu J H, Su X F, et al. Cleanliness study of SWRH82B hard wire steel produced by BOF-LF-CC processes. Chin J Eng, 2016, 38(Suppl 1): 160張游游, 劉建華, 蘇曉峰, 等. BOF-LF-CC生產SWRH82B硬線鋼的潔凈度研究. 工程科學學報, 2016, 38(增刊1): 160 [3] Zhang J Q, Liang Y L, Xiang S, et al. Effect of heat treatment process on microstructure and mechanical properties of SWRS82B wire rod. Adv Mater Res, 2010, 97-101: 752 doi: 10.4028/www.scientific.net/AMR.97-101.752 [4] Liu S W, Han Y S, Guan M, et al. Research on final-electromagnetic stirring position of 82B steel continuous casting based on superheat variation. J Iron Steel Res, 2018, 30(9): 716劉少偉, 韓延申, 管敏, 等. 基于過熱度變化的82B鋼連鑄末端電攪位置研究. 鋼鐵研究學報, 2018, 30(9):716 [5] Gui M W, Qin Z G. Improvement in central segregation of 82B high carbon steel bloom and quality of wire rod. Steelmaking, 2005, 21(3): 1 doi: 10.3969/j.issn.1002-1043.2005.03.001桂美文, 覃之光. 82B高碳鋼連鑄坯中心偏析及線材質量的改善. 煉鋼, 2005, 21(3):1 doi: 10.3969/j.issn.1002-1043.2005.03.001 [6] Park J H. Thermodynamic investigation on the formation of inclusions containing MgAl2O4 spinel during 16Cr–14Ni austenitic stainless steel manufacturing processes. Mater Sci Eng A, 2008, 472(1-2): 43 doi: 10.1016/j.msea.2007.03.011 [7] Chai G Q, Wang F M, Fu J, et al. Deformability control of Al2O3–SiO2–MgO–CaO–MnO system inclusions in high carbon hard wire 82B steel. J Univ Sci Technol Beijing, 2010, 32(6): 730柴國強, 王福明, 付軍, 等. 高碳硬線鋼82B中Al2O3–SiO2–MgO–CaO–MnO系夾雜物塑性化控制. 北京科技大學學報, 2010, 32(6):730 [8] Jin G X, Wang F M, Fu J, et al. Formation of martensite in 82B high carbon steel wire rod. Trans Mater Heat Treat, 2013, 34(6): 62金桂香, 王福明, 付軍, 等. 82B高碳鋼盤條中馬氏體成因. 材料熱處理學報, 2013, 34(6):62 [9] Li J J, Andrew G, Liu W. Effect of austenitization and cooling rates on the microstructure in a hyper-eutectoid steel. Acta Metall Sin, 2013, 49(5): 583 doi: 10.3724/SP.J.1037.2012.00699李俊杰, Andrew Godfrey, 劉偉. 奧氏體化與冷卻速率對過共析鋼組織的影響. 金屬學報, 2013, 49(5):583 doi: 10.3724/SP.J.1037.2012.00699 [10] Zhang Y D, Esling C, Gong M L, et al. Microstructural features induced by a high magnetic field in a hypereutectoid steel during austenitic decomposition. Scripta Mater, 2006, 54(11): 1897 doi: 10.1016/j.scriptamat.2006.02.009 [11] Zhang Z H, Wu H L, Feng L, et al. Application of numerical simulation technologies for continuous casting mold. J Iron Steel Res, 2016, 28(5): 1張朝暉, 吳海龍, 馮璐, 等. 數值模擬技術在連鑄結晶器中的應用. 鋼鐵研究學報, 2016, 28(5):1 [12] Zeng J, Chen W. Effect of casting speed on solidification structure and central macrosegregation during continuous casting of high-carbon rectangular billet. Metall Ital, 2015, 107(7): 43 [13] Zhang Z X, Min Y, Jiang M F. Mathematical simulation of continuous casting process of round billet solidification of 37Mn5 steel. J Northeast Univ Nat Sci, 2010, 31(7): 966張志祥, 閔義, 姜茂發. 37Mn5連鑄圓坯凝固過程數學模擬. 東北大學學報: 自然科學版, 2010, 31(7):966 [14] Su W, Jiang D B, Luo S, et al. Numerical simulation for optimization of F-EMS in billet continuous casting. J Northeast Univ Nat Sci, 2013, 34(5): 673蘇旺, 姜東濱, 羅森, 等. 方坯連鑄凝固末端電磁攪拌工藝優化的數值模擬. 東北大學學報: 自然科學版, 2013, 34(5):673 [15] Hu L, Guo H M, Duan S P. Effect of F-EMS on carbon segregation of 82B. China Metall, 2018, 28(9): 63胡亮, 郭紅民, 段少平. 凝固末端電磁攪拌對82B碳偏析的影響. 中國冶金, 2018, 28(9):63 [16] Feng L, Xie X D, Ju J T, et al. Numerical simulation of flow field and temperature field in 8-machine 8-strand tundish. Foundry Technol, 2017, 38(4): 881馮璐, 解西東, 巨建濤, 等. 八機八流中間包流場溫度場數值模擬. 鑄造技術, 2017, 38(4):881 [17] Feng L, Jiao Z Y, Zhang Z H, et al. Numerical simulation of inclusion behavior in 8-machine and 8-strand tundish. Foundry Technol, 2018, 39(5): 1008馮璐, 焦志遠, 張朝暉, 等. 八機八流中間包內夾雜物運動行為數值模擬. 鑄造技術, 2018, 39(5):1008 [18] Qin X F, Cheng C G, Li Y, et al. Effect of annular argon blowing at upper nozzle on formation of slag eye in tundish. Iron Steel, 2019, 54(8): 107秦緒鋒, 程常桂, 李陽, 等. 上水口環形吹氬對中間包內渣眼形成的影響. 鋼鐵, 2019, 54(8):107 [19] Lu H B, Cheng C G, Zhang F, et al. Simulation study on process optimization of bottom argon blowing in tundish. J Wuhan Univ Sci Technol, 2018, 41(1): 1盧海彪, 程常桂, 張豐, 等. 中間包底吹氬工藝優化的模擬研究. 武漢科技大學學報, 2018, 41(1):1 [20] Li L M, Li B K. Investigation of bubble-slag layer behaviors with hybrid Eulerian–Lagrangian modeling and large eddy simulation. JOM, 2016, 68(8): 2160 doi: 10.1007/s11837-016-1849-6 [21] Qin X F, Cheng C G, Li Y, et al. A simulation study on the flow behavior of liquid steel in tundish with annular argon blowing in the upper nozzle. Metals, 2019, 9(2): 225 doi: 10.3390/met9020225 [22] Chatterjee S, Chattopadhyay K. Tundish open eye formation in inert gas-shrouded tundishes: a macroscopic model from first principles. Metall Mater Trans B, 2016, 47(5): 3099 doi: 10.1007/s11663-016-0757-z [23] Zhang D J, Jiang X D, Chen Y J, et al. Practice of SWRH82B production by No. 3 billet continuous caster in Liuzhou steel. Sci Technol Liuzhou Steel, 2018(4): 10張德俊, 江學德, 陳永金, 等. 柳鋼3號方坯連鑄機生產SWRH82B實踐. 柳鋼科技, 2018(4):10 [24] Liu F Y, Zhang Y F. Superficial view on basic solidification theory of CC high carbon steel. Steelmaking, 1993(2): 56劉鳳云, 張一夫. 連鑄高碳鋼坯凝固基礎理論淺探. 煉鋼, 1993(2):56 [25] Chen Z P. Study on the Control of Continuous Casting Slab Quality under Unsteady Casting Conditions[Dissertation]. Shenyang: Northeastern University, 2008陳志平. 非穩態澆鑄條件下連鑄板坯質量控制研究[學位論文]. 沈陽: 東北大學, 2008 -