-
摘要: 基于煉鋼生產過程中殘余元素砷較難脫除的特點,并結合以往實驗室熱態脫砷研究結果。通過鋼包精煉爐(Ladle furnace refining furnace, LF爐)鋼液脫砷工業試驗,研究了LF精煉煉鋼過程中有關砷的脫除方法。采用Al–Mg–Ca合金作為脫砷劑,研究發現,LF爐可以實現鋼液精煉脫砷,但鋼液精煉過程中硫和鈣的含量是實現工業條件下脫砷的限制環節。因此,必須控制鋼液中硫和鈣的含量以保證鋼液脫砷效果。LF爐精煉脫砷之前必須將鋼液中的硫含量降至低于0.01%,加入Al–Mg–Ca合金后鋼液中鈣含量需高于0.0055%。Abstract: With the gradual depletion of high-grade iron ore resources, the usage amount of low-grade iron ore is increasing year by year. Moreover, given the environmental protection requirements and the objective to reduce industrial cost, the usage of scrap is significantly increasing. The above occurrences have led to a large increase in the percentage of residual elemental arsenic in steel. Also, the requirement for lower arsenic content in finished steel is increasingly stricter. Presently, the iron and steel enterprises have not yet developed a mature technology for dearsenication in molten steel; moreover, the theoretical studies on the dearsenication in molten steel are relatively few, which lead to a lack of relevant theoretical data. Therefore, how to realize an effective method for dearsenication in molten steel is a technical problem in the iron and steel industry. Considering the problems of poor dearsenication in the steelmaking process and the previous experimental results of dearsenication in laboratory. The dearsenication in the process of steelmaking was investigated through an industrial trial of dearsenication in the molten steel in the ladle furnace (LF) refining furnace. The Al–Mg–Ca alloy was chosen as dearseicating agent, The industrial test about dearsenication in the molten steel show: the dearsenication in the molten steel can be realized in the LF furnace, the sulfur and calcium content in the molten steel is restrictive factor for dearsenication under industrial condition; the control level of sulfur and calcium in molten steel is put forward to ensure the effect of dearsenication. The sulfur content in molten steel must be reduced to less than 0.01% before dearsenicating in LF furnace, the calcium should be higher than 0.0055% after adding Al–Mg–Ca alloy.
-
Key words:
- residual element /
- dearsenication /
- molten steel /
- arsenic /
- refine
-
表 1 Al–Mg–Ca合金化學成分
Table 1. Chemical composition of Al–Ma–Ca alloy
% Al Mg Ca Fe 45 2 14 39 表 2 工業脫砷試驗結果
Table 2. Industrial trial result of dearsenication
No. Initial wS/% Final wS/% Initial wAs/% Final wAs/% Alloy usage/kg Desulphurization rate/% Dearsenication rate/% 1 0.046 0.006 0.017 0.019 120 86.9 2 0.048 0.005 0.020 0.021 200 89.6 3 0.022 0.004 0.015 0.005 200 81.8 66.7 4 0.036 0.007 0.015 0.016 130 80.5 5 0.035 0.003 0.013 0.008 160 91.4 38.5 6 0.035 0.005 0.013 0.014 280 85.7 7 0.080 0.004 0.016 0.007 190 95.0 56.2 8 0.041 0.010 0.015 0.015 100 75.6 9 0.047 0.012 0.013 0.014 100 74.4 10 0.053 0.008 0.017 0.018 115 84.9 11 0.038 0.008 0.026 0.027 240 78.9 12 0.045 0.006 0.014 0.015 330 88.9 13 0.012 0.002 0.015 0.007 320 83.3 53.3 14 0.029 0.003 0.017 0.010 250 89.7 41.1 15 0.050 0.004 0.018 0.018 130 92.0 Note: wS is the mass fraction of sulphur, and wAs is the mass fraction of arsenic in the molten steel. www.77susu.com -
參考文獻
[1] Cheng R J, Ni H W, Zhang H, et al. Thermodynamics of arsenic removal from arsenic-bearing iron ores with sintering process and dust ash by roasting. Iron Steel, 2017, 52(6): 26成日金, 倪紅衛, 張華, 等. 含砷鐵礦石燒結及除塵灰焙燒脫砷熱力學. 鋼鐵, 2017, 52(6):26 [2] Nakazawa S, Yazawa A, Jorgensen F R A. Simulation of the removal of arsenic during the roasting of copper concentrate. Metall Mater Trans B, 1999, 30(3): 393 doi: 10.1007/s11663-999-0071-0 [3] Wu Z, Li J, Shi C B, et al. Effect of magnesium addition on inclusions in H13 die steel. Int J Miner Metall Mater, 2014, 21(11): 1062 doi: 10.1007/s12613-014-1010-x [4] Yin Z L, Lu W H, Xiao H. Arsenic removal from copper-silver iron ore by roasting in vacuum. Vacuum, 2014, 101: 350 doi: 10.1016/j.vacuum.2013.10.005 [5] Kor G J W. Residual elements in steelmaking. Chem Inform, 1997, 28(50): 477 [6] Lv Q, Zhang S H, Hu X. Experimental study on removal arsenic in iron ore with arsenic sintering process. Iron Steel, 2010, 45(6): 7呂慶, 張淑會, 胡曉. 含砷鐵礦石燒結脫砷的試驗研究. 鋼鐵, 2010, 45(6):7 [7] Jiang T, Huang Y F, Zhang Y B, et al. Behavior of arsenic in arsenic-bearing iron concentrate pellets by preoxidizing-weak reduction roasting process. J Cent South Univ Nat Sci, 2010, 41(1): 1姜濤, 黃艷芳, 張元波, 等. 含砷鐵精礦球團預氧化-弱還原焙燒過程中砷的揮發行為. 中南大學學報: 自然科學版, 2010, 41(1):1 [8] Cheng R J, Ni H W, Zhang H, et al. Experimental study on arsenic removal from low arsenic-bearing iron ore with sintering process. Sinter Pelletizing, 2016, 41(3): 13成日金, 倪紅衛, 張華, 等. 低砷鐵礦石燒結脫砷試驗研究. 燒結球團, 2016, 41(3):13 [9] Liu S P, Sun S C. Dearsenication by vaporization during vacuum treatment of liquid steel. Special Steel, 2002, 23(3): 1 doi: 10.3969/j.issn.1003-8620.2002.03.001劉守平, 孫善長. 鋼液真空處理揮發脫砷. 特殊鋼, 2002, 23(3):1 doi: 10.3969/j.issn.1003-8620.2002.03.001 [10] Yao C C, Ding Y H, Huang B F. Study on related factors of dearseinzation of hot metal with CaO–CaF2 slag. Res Iron Steel, 2013, 41(1): 14姚柴柴, 丁躍華, 黃幫福. 影響鐵水用CaO–CaF2渣系脫砷的因素. 鋼鐵研究, 2013, 41(1):14 [11] Zhang J S. Status and trend of exploitation and utilization of iron ore resources in China. Iron Steel, 2007, 42(2): 1 doi: 10.3321/j.issn:0449-749X.2007.02.001張涇生. 我國鐵礦資源開發利用現狀及發展趨勢. 鋼鐵, 2007, 42(2):1 doi: 10.3321/j.issn:0449-749X.2007.02.001 [12] Xiao J G. Interaction Between rare-earth (RE) element lanthanum (La) and Residual element arsenic (As) in Ship Hull Steel[Dissertation]. Beijing: University of Science and Technology Beijing, 2011肖寄光. 稀土元素鑭與船板鋼中殘余元素砷的相互作用[學位論文]. 北京 : 北京科技大學, 2011 [13] Fu B. The Effect and Control Study of Tramp Elements in Steel[Dissertation]. Wuhan: University of Science and Technology Wuhan, 2010付兵. 鋼中殘余元素的影響及其控制研究[學位論文]. 武漢 : 武漢科技大學, 2010 [14] Li W B, Bao Y P, Wang M, et al. Experimental study dearsenization of molten steel with different Ca alloys. Chin J Eng, 2016, 38(4): 484李文博, 包燕平, 王敏, 等. 不同鈣合金對鋼液脫砷作用的實驗研究. 工程科學學報, 2016, 38(4):484 [15] Xin W B. Detriment of Arsenic on the Properties of Steel and Improvement by Adding Rare Earth[Dissertation]. Beijing: University of Science and Technology Beijing, 2016辛文彬. 砷對鋼性能的影響及稀土的改善作用研究[學位論文]. 北京 : 北京科技大學, 2016 [16] Li W B. The Applied Fundamental Research on the Removal of Residual Element Arsenic during Steelmaking Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2016李文博. 煉鋼過程殘余元素砷(As)脫除的應用基礎研究[學位論文]. 北京 : 北京科技大學, 2016 [17] Zhu Y Z, Li J C, Xu J P. Macroscopic distribution of residual elements As, S and P in steel strips produced by compact strip production (CSP) process. Metall Mater Trans A, 2012, 43(7): 2509 doi: 10.1007/s11661-012-1091-y [18] Zhu Y Z, Li J C, Liang D M, et al. Distribution of arsenic on micro-interfaces in a kind of Cr, Nb and Ti microalloyed low carbon steel produced by a compact strip production process. Mater Chem Phys, 2011, 130(1-2): 524 doi: 10.1016/j.matchemphys.2011.07.016 [19] Xiao J G, Wang F M, Cheng H J. Effect of residual elements Cu, As and Sn on surface microcrack of hot rolled steel plate. Heat Treat Met, 2010, 35(12): 102肖寄光, 王福明, 程慧靜. 殘余元素銅砷錫對鋼板表面微裂紋形成的影響. 金屬熱處理, 2010, 35(12):102 [20] Li S Q, Li S Q, Xiong G H, et al. Effect of residual deleterious elements in steel on quality of tube for oil well. Special Steel, 2003, 24(4): 31 doi: 10.3969/j.issn.1003-8620.2003.04.011李素芹, 李士琦, 熊國宏, 等. 鋼中殘余有害元素對油井管質量的影響. 特殊鋼, 2003, 24(4):31 doi: 10.3969/j.issn.1003-8620.2003.04.011 [21] An W. The Research on the Physical Characters of Alkaline-earth Metals Alloys and Desulfurization of Hot Metal[Dissertation]. Beijing: University of Science and Technology Beijing, 2004安文. 堿土金屬及其合金的物性與其鐵水脫硫研究[學位論文]. 北京 : 北京科技大學, 2004 [22] Fu B, Xue Z L, Wu G L, et al. Experimental study on the dearsenization of hot metal with CaC2–CaF2 slag. Chin J Process Eng, 2010, 10(Suppl 1): 146付兵, 薛正良, 吳光亮, 等. 鐵水用CaC2–CaF2渣系脫砷研究. 過程工程學報, 2010, 10(增刊1): 146 [23] Liu S P, Sun S C. A study on dearsenication of molten iron and liquid steel with Ca?Si alloy. Special Steel, 2001, 22(5): 12 doi: 10.3969/j.issn.1003-8620.2001.05.004劉守平, 孫善長. 鋼液和鐵水硅鈣合金脫砷研究. 特殊鋼, 2001, 22(5):12 doi: 10.3969/j.issn.1003-8620.2001.05.004 [24] Li W B, Bao Y P, Wang M, et al. Analysis of factors for Si?Ca?Ba alloy+CaF2 dearsenication of molten steel. Iron Steel, 2015, 50(9): 17李文博, 包燕平, 王敏, 等. 采用Si?Ca?Ba合金+CaF2進行鋼液脫砷的因素分析. 鋼鐵, 2015, 50(9):17 [25] Harada T, Tanaka H. Future steelmaking model by direct reduction technologies. ISIJ Int, 2011, 51(8): 1301 doi: 10.2355/isijinternational.51.1301 -