<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

非均質土中海上風電單樁基礎動力響應特性

孔德森 劉一 鄧美旭 李亞洲

孔德森, 劉一, 鄧美旭, 李亞洲. 非均質土中海上風電單樁基礎動力響應特性[J]. 工程科學學報, 2021, 43(5): 710-719. doi: 10.13374/j.issn2095-9389.2020.03.19.004
引用本文: 孔德森, 劉一, 鄧美旭, 李亞洲. 非均質土中海上風電單樁基礎動力響應特性[J]. 工程科學學報, 2021, 43(5): 710-719. doi: 10.13374/j.issn2095-9389.2020.03.19.004
KONG De-sen, LIU Yi, DENG Mei-xu, LI Ya-zhou. Dynamic response characteristics of an offshore, wind-power monopile foundation in heterogeneous soil[J]. Chinese Journal of Engineering, 2021, 43(5): 710-719. doi: 10.13374/j.issn2095-9389.2020.03.19.004
Citation: KONG De-sen, LIU Yi, DENG Mei-xu, LI Ya-zhou. Dynamic response characteristics of an offshore, wind-power monopile foundation in heterogeneous soil[J]. Chinese Journal of Engineering, 2021, 43(5): 710-719. doi: 10.13374/j.issn2095-9389.2020.03.19.004

非均質土中海上風電單樁基礎動力響應特性

doi: 10.13374/j.issn2095-9389.2020.03.19.004
基金項目: 山東省自然科學基金資助項目(ZR2019MEE027);國家自然科學基金資助項目(41372288)
詳細信息
    通訊作者:

    E-mail:skd992012@sdust.edu.cn

  • 中圖分類號: TU473.1

Dynamic response characteristics of an offshore, wind-power monopile foundation in heterogeneous soil

More Information
  • 摘要: 采用有限元分析軟件ABAQUS建立了非均質土中海上風電單樁基礎數值計算模型,將樁基礎受到的波浪、洋流及風荷載等效成雙向對稱循環荷載,對水平循環荷載作用下樁身水平位移、樁身剪力、樁身彎矩和樁側土抗力進行了研究,并對不同循環次數下樁身水平位移進行了對比分析。研究表明,樁身水平位移隨時間變化逐漸累積,隨著循環次數的增加,泥面處樁身最大位移發生的時間點滯后;樁身剪力出現負值;樁身彎矩最大值發生在淺層土體;樁身外壁土抗力曲線隨時間的變化在埋深約2/3處出現分界點,分界點上下范圍內土抗力變化規律正好相反,在淤泥土和粉砂土分界面處增加顯著;不同時間點樁身內壁沿埋深承擔的荷載基本不變。

     

  • 圖  1  非均質土中海上風電單樁基礎數值計算模型

    Figure  1.  Numerical model of offshore wind power monopile foundation in heterogeneous soil

    圖  2  樁側土抗力分布圖

    Figure  2.  Soil resistance distribution diagram of pile side

    圖  3  樁頂荷載位移曲線圖

    Figure  3.  Load?displacement curve of pile top

    圖  4  第20次循環時樁身水平位移變化曲線。(a)前5 s;(b)后5 s

    Figure  4.  Horizontal displacement variation curves along the pile shaft during the 20th cycle: (a) first 5 s; (b) next 5 s

    圖  5  第20次循環時樁身剪力變化曲線。(a)前5 s;(b)后5 s

    Figure  5.  Shear force variation curves along the pile shaft during the 20th cycle: (a) first 5 s; (b) next 5 s

    圖  6  第20次循環時樁身彎矩變化曲線。(a)前5 s;(b)后5 s

    Figure  6.  Bending moment variation curves along the pile shaft during the 20th cycle: (a) first 5 s; (b) next 5 s

    圖  7  第20次循環時樁身外壁土抗力埋深分布曲線。(a)前5 s順載側;(b)后5 s逆載側

    Figure  7.  Soil resistance distribution curves of pile outer wall along the buried depth during the 20th cycle: (a) forward side of the first 5 s; (b) reverse load side after 5 s

    圖  8  第20次循環時樁身內壁土抗力埋深分布曲線。(a)前5 s順載側;(b)后5 s逆載側

    Figure  8.  Soil resistance distribution curves of pile inner wall along the buried depth during the 20th cycle: (a) forward side of the first 5 s; (b) reverse load side after 5 s

    圖  9  N次循環時泥面處樁身和樁底端水平位移。(a)泥面處;(b)樁底端

    Figure  9.  Horizontal displacement of pile shaft at mud surface and pile bottom at the Nth cycle: (a) at the mud level; (b) bottom end of pile

    圖  10  N次循環結束時泥面處樁身和樁底端水平位移。(a)泥面處;(b)樁底端

    Figure  10.  Horizontal displacement of pile body at the mud surface and pile bottom at the end of the Nth cycle: (a) at the mud level; (b) bottom end of pile

    圖  11  樁身水平位移對比分析。(a)4 MN水平力作用下樁身位移[27];(b)193 s時樁身位移

    Figure  11.  Comparative analysis of horizontal displacement along the pile shaft: (a) pile displacement under 4-MN horizontal force[27]; (b) pile displacement at 193 s

    圖  12  樁身剪力對比分析。(a)4 MN水平力作用下樁身剪力[27];(b)193 s時樁身剪力圖

    Figure  12.  Comparative analysis of shear force along the pile shaft: (a) pile displacement under 4-MN horizontal force[27]; (b) pile displacement at 193 s

    圖  13  樁身彎矩對比分析。(a)4 MN水平力作用下樁身彎矩[27];(b)193 s時樁身彎矩圖

    Figure  13.  Comparative analysis of bending moment along the pile shaft: (a) pile displacement under 4-MN horizontal force[27]; (b) pile displacement at 193 s

    表  1  樁周土及樁端土參數

    Table  1.   Parameters of soil around pile and soil at pile end

    Soil layerThickness/
    m
    Elasticity modulus/
    MPa
    Poisson’s
    ratio
    Effective weight/
    (kN·m?3)
    Cohesive force/
    kPa
    Internal friction angle/
    (°)
    Dilatancy angle/
    (°)
    Mucky clay 28 6.6 0.3 7.5 17.6 12.8 0.1
    Silt 16 6.4 0.3 6.2 19.8 11.6 0.1
    Silty sand 56 39.5 0.3 9.1 4.5 31.3 15
    下載: 導出CSV

    表  2  樁的物理力學參數

    Table  2.   Physical and mechanical parameters of pile

    Pile diameter/mWall thickness/mmBurial depth/mPile length/mElasticity modulus/GPaPoisson’s ratioEffective weight/(kN·m?3)
    57050662100.368
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jin J W, Yang M, Wang W, et al. Offshore wind turbine monopile foundation modal and parameter sensitivity analysis. J Tongji Univ Nat Sci, 2014, 42(3): 386 doi: 10.3969/j.issn.0253-374x.2014.03.010

    靳軍偉, 楊敏, 王偉, 等. 海上風電機組單樁基礎模態及參數敏感性分析. 同濟大學學報(自然科學版), 2014, 42(3):386 doi: 10.3969/j.issn.0253-374x.2014.03.010
    [2] Wang G C, Wang W, Yang M. Design and analysis of monopile foundation for 3.6 MW offshore wind turbine. Chin J Geotech Eng, 2011, 33(Suppl 2): 95

    王國粹, 王偉, 楊敏. 3.6 MW海上風機單樁基礎設計與分析. 巖土工程學報, 2011, 33(增刊 2):95
    [3] Kong D S, Deng M X, Liu Y, et al. Study of the force and deformation characteristics of subsea mudmat-pile hybrid foundations. Polish Maritime Res, 2018, 25(S3): 43 doi: 10.2478/pomr-2018-0111
    [4] Li W C, Yang M, Zhu B T. Case study of p-y model for short rigid pile in sand. Rock Soil Mech, 2015, 36(10): 2989

    李衛超, 楊敏, 朱碧堂. 砂土中剛性短樁的p-y模型案例研究. 巖土力學, 2015, 36(10):2989
    [5] Luo R P, Li W C, Yang M. Accumulated response of offshore large-diameter monopile under lateral cyclic loading. Rock Soil Mech, 2016, 37(Suppl 2): 607

    羅如平, 李衛超, 楊敏. 水平循環荷載下海上大直徑單樁累積變形特性. 巖土力學, 2016, 37(增刊 2):607
    [6] Leblanc C, Houlsby G T, Byrne B W. Response of stiff piles to long term cyclic lateral loading. Géotechnique, 2010, 60(2): 79
    [7] Peng J, Clarke B G, Rouainia M. Increasing the resistance of piles subject to cyclic lateral loading. J Geotech Geoenviron Eng, 2011, 137(10): 977 doi: 10.1061/(ASCE)GT.1943-5606.0000504
    [8] Guo P F, Zhou S H, Yang L C, et al. Analytical solution of the vertical dynamic response of rock-socked pile considering transverse inertial effect in unsaturated soil. Chin J Theor Appl Mech, 2017, 49(2): 344 doi: 10.6052/0459-1879-16-286

    郭鵬飛, 周順華, 楊龍才, 等. 考慮橫向慣性效應的非飽和土中單樁的豎向動力響應. 力學學報, 2017, 49(2):344 doi: 10.6052/0459-1879-16-286
    [9] Zhang G J. Analysis on Horizontal Displacement of Monopile Foundations under Long-Term Cyclic Later Loading [Dissertation]. Hangzhou: Zhejiang University, 2013

    張光建. 長期水平循環荷載下大直徑樁的累積位移分析[學位論文]. 杭州: 浙江大學, 2013
    [10] Basack S, Banerjee A K. Offshore pile foundation subjected to lateral cyclic load in layered soil. Adv Mater Res, 2014, 891-892: 24 doi: 10.4028/www.scientific.net/AMR.891-892.24
    [11] Bhattacharya S, Adhikari S. Experimental validation of soil-structure interaction of offshore wind turbines. Soil Dyn Earthquake Eng, 2011, 31(5-6): 805 doi: 10.1016/j.soildyn.2011.01.004
    [12] Zhu B, Xiong G, Liu J C, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand. Chin J Geotech Eng, 2013, 35(10): 1807

    朱斌, 熊根, 劉晉超, 等. 砂土中大直徑單樁水平受荷離心模型試驗. 巖土工程學報, 2013, 35(10):1807
    [13] Kuo Y S, Achmus M, Abdel-Rahmen K. Minimum embedded length of cyclic horizontally loaded monopoles. J Geotech Geoenviron Eng, 2012, 138(3): 357 doi: 10.1061/(ASCE)GT.1943-5606.0000602
    [14] Achmus M, Kuo Y S, Abdel-Rahman K, et al. Capacity degradation method for piles under cyclic axial loads. Comput Geotechnics, 2020, 128: 103838 doi: 10.1016/j.compgeo.2020.103838
    [15] Kong D S, Deng M X, Xu Y. Study on calculation of pile sliding interval of large-diameter steel pipe piles on offshore platforms. Math Problems Eng, 2019, 2019: 3549296
    [16] Yu S Z, Li S. P-y curve methods of steel pipe pile foundations under combined loads. J Hydroelectr Eng, 2018, 37(1): 101 doi: 10.11660/slfdxb.20180112

    余世章, 李颯. 復合荷載下海上鋼管樁基礎p-y曲線法研究. 水力發電學報, 2018, 37(1):101 doi: 10.11660/slfdxb.20180112
    [17] Liu J C, Xiong G, Zhu B, et al. Bearing capacity and deflection behaviors of large diameter monopile foundations in sand seabed. Rock Soil Mech, 2015, 36(2): 591

    劉晉超, 熊根, 朱斌, 等. 砂土海床中大直徑單樁水平承載與變形特性. 巖土力學, 2015, 36(2):591
    [18] Liu H J, Yin Y J, Chang J Q. Research on the pile-soil interaction of monopile foundation under horizontal load for offshore wind turbine. Periodic Ocean Univ China, 2016, 46(3): 113

    劉紅軍, 尹燕京, 常季青. 水平荷載下海上風機單樁基礎樁土相互作用研究. 中國海洋大學學報(自然科學版), 2016, 46(3):113
    [19] Kong D S, Deng M X, Zhao Z M. Seismic interaction characteristics of an inclined straight alternating pile group-soil in liquefied ground. Adv Civil Eng, 2019, 2019: 3758286
    [20] Kong W X, Rui Y Q, Dong B D. Determination of dilatancy angle for geomaterials under non-associated flow rule. Rock Soil Mech, 2009, 30(11): 3278 doi: 10.3969/j.issn.1000-7598.2009.11.010

    孔位學, 芮勇勤, 董寶弟. 巖土材料在非關聯流動法則下剪脹角選取探討. 巖土力學, 2009, 30(11):3278 doi: 10.3969/j.issn.1000-7598.2009.11.010
    [21] Kong D S, Deng M X, Liu Y, et al. The environmental study on consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires. Ekoloji, 2018, 27(106): 1503
    [22] Fei K, Peng J. Detailed Explanation of ABAQUS Geotechnical Engineering Examples. Beijing: The People’s Posts and Telecommunications Press, 2016

    費康, 彭劼. ABAQUS巖土工程實例詳解. 北京: 人民郵電出版社, 2016
    [23] Feng L Y, Li D Y. Analysis of influence factors on cyclic bearing behaviors of skirted suction caissons. Adv Eng Sci, 2018, 50(6): 156

    馮凌云, 李大勇. 砂土中裙式吸力基礎水平循環承載特性的影響因素分析. 工程科學與技術, 2018, 50(6):156
    [24] Cao J F, Shi Y P. Answers to Frequently Asked Questions About ABAQUS Finite Element Analysis. Beijing: China Machine Press, 2009

    曹金鳳, 石亦平. ABAQUS有限元分析常見問題解答. 北京: 機械工業出版社, 2009
    [25] Sun Y X. Experimental and Numerical Studies on a Laterally Loaded Monopile Foundation of Offshore Wind Turbine [Dissertation]. Hangzhou: Zhejiang University, 2016

    孫永鑫. 近海風機超大直徑單樁水平承載特性試驗與數值分析[學位論文]. 杭州: 浙江大學, 2016
    [26] Kong D S, Bai Y F, Chen Y P, et al. A study on the seismic response characteristics of an oblique pile group-soil-structure with different pile caps. Shock Vib, 2019, 2019: 8141045
    [27] Chen X K. Study on Soil Plug Effect of Super-Large Diameter Steel Pipe Pile Foundation of Offshore Wind Turbine [Dissertation]. Nanjing: Southeast University, 2017

    陳新奎. 海上風電超大直徑鋼管樁基礎土塞效應研究[學位論文]. 南京: 東南大學, 2017
    [28] Song B, Zhao W N, Shuang M. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action. Chin J Eng, 2019, 41(10): 1351

    宋波, 趙偉娜, 雙妙. 沖刷深度對海上風電塔地震動力響應的影響分析. 工程科學學報, 2019, 41(10):1351
    [29] Yan T J, Zhang L W, Cui R. Numerical simulation of the separation efficiency in offshore oil field downhole oil-water separation (DOWS). J Beijing Univ Chem Technol Nat Sci, 2012, 05: 108

    顏廷俊, 張麗穩, 崔日. 海上油田井下油水分離裝置分離效率的數值模擬. 北京化工大學學報(自然科學版), 2012, 05:108
  • 加載中
圖(13) / 表(2)
計量
  • 文章訪問數:  2021
  • HTML全文瀏覽量:  860
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-19
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回