<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于分形理論無腹筋混凝土梁的受剪性能

于江 呂旭濱 秦擁軍

于江, 呂旭濱, 秦擁軍. 基于分形理論無腹筋混凝土梁的受剪性能[J]. 工程科學學報, 2021, 43(10): 1385-1396. doi: 10.13374/j.issn2095-9389.2020.03.19.003
引用本文: 于江, 呂旭濱, 秦擁軍. 基于分形理論無腹筋混凝土梁的受剪性能[J]. 工程科學學報, 2021, 43(10): 1385-1396. doi: 10.13374/j.issn2095-9389.2020.03.19.003
YU Jiang, Lü Xu-bin, QIN Yong-jun. Experimental study on concrete beams without web reinforcement based on fractal theory[J]. Chinese Journal of Engineering, 2021, 43(10): 1385-1396. doi: 10.13374/j.issn2095-9389.2020.03.19.003
Citation: YU Jiang, Lü Xu-bin, QIN Yong-jun. Experimental study on concrete beams without web reinforcement based on fractal theory[J]. Chinese Journal of Engineering, 2021, 43(10): 1385-1396. doi: 10.13374/j.issn2095-9389.2020.03.19.003

基于分形理論無腹筋混凝土梁的受剪性能

doi: 10.13374/j.issn2095-9389.2020.03.19.003
基金項目: 國家自然科學基金資助項目(51668060)
詳細信息
    通訊作者:

    E-mail:1332506524@qq.com

  • 中圖分類號: TU375.1

Experimental study on concrete beams without web reinforcement based on fractal theory

More Information
  • 摘要: 基于裂縫的發展及分布形態,探究無腹筋混凝土梁在不同剪跨比和縱筋配筋率作用下的剪切性能,采用剪跨比分別為1.5、2、2.5和縱筋配筋率分別為1.28%、1.62%、1.99%的9組無腹筋混凝土梁進行四點加載受剪試驗,通過應用分形幾何理論對試驗梁表面的裂縫進行分析,使用盒計數法計算得到分級荷載及極限荷載作用下梁表面裂縫的分形維數,探討了梁表面分形維數與極限荷載、分級荷載及跨中撓度之間的關系。結果表明:剪跨比與極限荷載及開裂荷載成反比,而縱筋配筋率與極限荷載成正比,但其對于開裂荷載的影響較小。無腹筋混凝土梁不論在分級加載作用下還是極限荷載作用下都具備明顯的分形特征,在分級荷載作用下的分形維數在0.964~1.449,在極限荷載作用下的分形維數在1.33附近。分級荷載、跨中撓度與分形維數之間呈現較好的對數關系,分級荷載與分形維數的變化曲線受剪跨比及梁縱筋配筋率的影響具有一定的規律性,而跨中撓度受剪跨比的影響較小,在縱筋配筋率作用下,其曲線的曲率呈現出先增大后減小的趨勢,但極限荷載與分形維數之間的關系具有一定的差異性,極限荷載會隨著剪跨比的增大呈現出先增大后減小的趨勢,隨著縱筋配筋率的增大呈現出的差異性較大。

     

  • 圖  1  無腹筋梁尺寸及配筋圖(單位: mm)

    Figure  1.  Dimensions and reinforcement drawing of girder without rib (Unit: mm)

    圖  2  加載裝置布置圖。(a)λ = 1.5;(b)λ = 2;(c)λ = 2.5;(d)現場布置圖

    Figure  2.  Load device layout: (a) λ = 1.5; (b) λ = 2; (c) λ = 2.5; (d) site layout

    圖  3  試驗梁裂縫分布圖。(a)WL-1;(b)WL-2;(c)WL-3;(d)WL-4;(e)WL-5;(f)WL-6;(g)WL-7;(h)WL-8;(i)WL-9

    Figure  3.  Crack distribution of test beam: (a) WL-1; (b) WL-2; (c) WL-3; (d) WL-4; (e) WL-5; (f) WL-6; (g) WL-7; (h) WL-8; (i) WL-9

    圖  4  相同剪跨比、不同縱筋配筋率作用下的荷載與撓度間關系。(a) λ = 1.5;(b)λ = 2;(c)λ = 2.5

    Figure  4.  Relationship between load and deflection under the same shear-span ratio and different longitudinal reinforcement ratios: (a) λ = 1.5; (b) λ = 2; (c) λ = 2.5

    圖  5  相同縱筋配筋率、不同剪跨比作用下荷載與撓度間的關系。(a)ρ = 1.28%;(b)ρ = 1.62%;(c)ρ = 1.99%

    Figure  5.  Relationship between load and deflection under the same longitudinal reinforcement ratio and different shear span ratios: (a) ρ = 1.28%; (b) ρ = 1.62%; (c) ρ = 1.99%

    圖  6  開裂荷載與極限荷載對比圖

    Figure  6.  Comparison of cracking load and ultimate load

    圖  7  不同等級荷載下梁表面的lnN(L)–ln(1/L)圖。(a)WL-1;(b)WL-2;(c)WL-3;(d)WL-4;(e)WL-5;(f)WL-6;(g)WL-7;(h)WL-8;(i)WL-9

    Figure  7.  lnN(L)–ln(1/L) diagram of beam surface under different grades of load: (a) WL-1; (b) WL-2; (c) WL-3; (d) WL-4; (e) WL-5; (f) WL-6; (g) WL-7; (h) WL-8; (i) WL-9

    圖  8  極限荷載下梁表面的lnN(L)–ln(1/L)圖

    Figure  8.  lnN(L)–ln(1/L) diagram of the beam surface under ultimate load

    圖  9  極限荷載作用下梁的分形維數

    Figure  9.  Fractal dimension of the beam under ultimate load

    圖  10  相同剪跨比、不同縱筋配筋率作用下的極限荷載與分形維數間的關系。(a)λ = 1.5;(b)λ = 2;(c)λ = 2.5

    Figure  10.  Relationship between ultimate load and fractal dimension under the same shear span ratio and different longitudinal reinforcement ratios: (a) λ = 1.5, (b) λ = 2, (c) λ = 2.5

    圖  11  相同縱筋配筋率、不同剪跨比作用下的極限荷載與分形維數間的關系。(a)ρ = 1.28%;(b)ρ = 1.62%;(c)ρ = 1.99%

    Figure  11.  Relationship between ultimate load and fractal dimension under the same longitudinal reinforcement ratio and different shear span ratios: (a) ρ = 1.28%; (b) ρ = 1.62%; (c) ρ = 1.99%

    圖  12  相同剪跨比、不同縱筋配筋率作用下的分級荷載與分形維數間關系。(a)λ = 1.5;(b)λ = 2;(c)λ = 2.5

    Figure  12.  Relationship between the graded load and the fractal dimension under the same shear span ratio and different longitudinal reinforcement ratios: (a) λ = 1.5; (b) λ = 2; (c) λ = 2.5

    圖  13  相同縱筋配筋率、不同剪跨比作用下的分級荷載與分形維數間關系。(a)ρ = 1.28%;(b)ρ = 1.62%;(c)ρ = 1.99%

    Figure  13.  Relationship between the graded load and the fractal dimension under the same longitudinal reinforcement ratio and different shear span ratios: (a) ρ = 1.28%; (b) ρ = 1.62%; (c) ρ = 1.99%

    圖  14  相同剪跨比、不同縱筋配筋率作用下的跨中撓度與分形維數間的關系。(a)λ = 1.5;(b)λ = 2;(c)λ = 2.5

    Figure  14.  Relationship between mid-span deflection and fractal dimension under the same shear-span ratio and different longitudinal reinforcement ratios: (a) λ = 1.5; (b) λ = 2; (c) λ = 2.5

    圖  15  相同縱筋配筋率、不同剪跨比作用下的跨中撓度與分形維數間關系。(a)ρ = 1.28%;(b)ρ = 1.62%;(c)ρ = 1.99%

    Figure  15.  Relationship between mid-span deflection and fractal dimension under the same longitudinal reinforcement ratio and different shear-span ratios: (a) ρ = 1.28%; (b) ρ = 1.62%; (c) ρ = 1.99%

    表  1  水泥的化學成分(質量分數)

    Table  1.   Chemical composition of cement %

    SiO2Al2O3Fe2O3CaOMgOSO3K2ONa2OLi2O
    21.225.053.2660.240.972.670.500.73
    下載: 導出CSV

    表  2  粗骨料的實驗性能

    Table  2.   Properties of coarse aggregate

    Micron content/%Water absorption rate/%Needle-like content/%Ruggedness/
    %
    Apparent density/(kg·m–3)
    0.30.5512640
    下載: 導出CSV

    表  3  試件參數信息

    Table  3.   Parameter information of test pieces

    NumberingSize/mmCompressive strength/MPaReinforcement diameter/mmLongitudinal strengthShear span ratioReinforcement ratio/%
    WL-11800×150×25041.03116HRB4001.51.28
    WL-21800×150×25044.10316HRB40021.28
    WL-31800×150×25042.77216HRB4002.51.28
    WL-41800×150×25038.46718HRB4001.51.62
    WL-51800×150×25037.00318HRB40021.62
    WL-61800×150×25036.83218HRB4002.51.62
    WL-71800×150×25038.60720HRB4001.51.99
    WL-81800×150×25038.47120HRB40021.99
    WL-91800×150×25046.21920HRB4002.51.99
    下載: 導出CSV

    表  4  不同荷載作用下梁表面分形維數

    Table  4.   Fractal dimension of beam surface under different loads

    Load/kNFractal dimension
    WL-1WL-2WL-3WL-4WL-5WL-6WL-7WL-8WL-9
    200.9640.951
    401.0181.0441.0400.9911.0421.0820.9911.0580.955
    601.0591.11.2751.0441.0751.2210.9991.0721.122
    801.0931.211.3361.1331.2151.3301.0541.1701.161
    1001.1641.321.2031.2831.4491.1571.2481.321
    1201.2671.2081.3401.1881.295
    1401.3041.2181.3571.1931.354
    1601.3021.2761.207
    1801.3351.3561.255
    1901.333
    下載: 導出CSV

    表  5  分級荷載與分形維數關系的km

    Table  5.   k, m values of the relationship between the graded load and the fractal dimension

    ParametersWL-1WL-2WL-3WL-4WL-5WL-6WL-7WL-8WL-9
    k0.1560.1490.1130.1500.1410.0820.1400.1200.148
    m8.984–6.256.258.827–1.48127.0378.6934.824–20.653
    R20.9260.8960.8920.9430.9420.8900.8980.9170.921
    下載: 導出CSV

    表  6  跨中撓度與分形維數關系的nv

    Table  6.   n, v values of the relationship between the mid-span deflection and the fractal dimension

    ParametersWL-1WL-2WL-3WL-4WL-5WL-6WL-7WL-8WL-9
    n0.1290.1080.1160.1230.0970.0560.1260.1020.093
    v83.04782.72773.28166.04968.4577551.30752.61348.898
    R20.9370.9390.9660.9500.9370.9220.9280.9040.966
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Du X L, Jie P L, Jin L. Dynamic flexural-tensile failure mode analysis of concrete beam with initial defect. Eng Mech, 2015, 32(2): 74

    杜修力, 揭鵬力, 金瀏. 考慮初始缺陷影響的混凝土梁動態彎拉破壞模式分析. 工程力學, 2015, 32(2):74
    [2] Sun Y B, Yu G M, Zhang Y, et al. Fractal study on crack growth path of reinforced concrete beams fracture. Eng Constr, 2016, 48(7): 6

    孫葉冰, 于廣明, 張洋, 等. 鋼筋混凝土梁斷裂裂紋擴展路徑的分形研究. 工程建設, 2016, 48(7):6
    [3] Tang C A, Zhu W C. A Numerical Experiment of Concrete Damage and Fracture. Beijing: Science Press, 2003

    唐春安, 朱萬成. 混凝土損傷與斷裂: 數值試驗. 北京: 科學出版社, 2003
    [4] Mandelbort B B, Wheeler J A. The fractal geometry of nature. Am J Phys, 1983, 51(3): 286 doi: 10.1119/1.13295
    [5] Ma X, Xie X P, Ye X W, et al. Fractal characteristics of pore structure of calcium-based geopolymer based on nitrogen adsorption. Mater Rev, 2019, 33(12): 1989 doi: 10.11896/cldb.18030014

    馬驍, 謝雪鵬, 葉雄偉, 等. 基于氮氣吸附法的鈣基地聚合物孔隙結構分形特征. 材料導報, 2019, 33(12):1989 doi: 10.11896/cldb.18030014
    [6] Li G Q, Deng X J. Fractal effect of graded aggregate. Concrete, 1995(1): 3

    李國強, 鄧學鈞. 級配骨料的分形效應. 混凝土, 1995(1):3
    [7] Zhou J H, Kang T B, Wang F C. Pore structure and carbonation fractal characteristics of waste fiber recycled concrete. Bull Chin Ceram Soc, 2017, 36(5): 1686

    周靜海, 康天蓓, 王鳳池. 廢棄纖維再生混凝土孔結構及碳化性能分形特征研究. 硅酸鹽通報, 2017, 36(5):1686
    [8] Tian W, Dang F N, Chen H Q. Fractal analysis on meso-fracture of concrete based on the technique of CT image processing. J Basic Sci Eng, 2012, 20(3): 424 doi: 10.3969/j.issn.1005-0930.2012.03.009

    田威, 黨發寧, 陳厚群. 基于CT圖像處理技術的混凝土細觀破裂分形分析. 應用基礎與工程科學學報, 2012, 20(3):424 doi: 10.3969/j.issn.1005-0930.2012.03.009
    [9] Jiao C J, Li X B, Cheng C M, et al. Dynamic damage constitutive relationship of high strength concrete based on fractal theory. Explos Shock Waves, 2018, 38(4): 925

    焦楚杰, 李習波, 程從密, 等. 基于分形理論的高強混凝土動態損傷本構關系. 爆炸與沖擊, 2018, 38(4):925
    [10] Zhang W S, Zhang J B, Li J Y, et al. Research of pore area fractal characteristic of concrete and its test method. J Build Mater, 2012, 15(3): 312 doi: 10.3969/j.issn.1007-9629.2012.03.004

    張文生, 張建波, 李建勇, 等. 混凝土孔隙面分形特征與測試方法研究. 建筑材料學報, 2012, 15(3):312 doi: 10.3969/j.issn.1007-9629.2012.03.004
    [11] Dong Y L, Xie H P, Zhao P. Study on b value and fractal dimension Df of concrete under complete process compression. J Exp Mech, 1996, 11(3): 272

    董毓利, 謝和平, 趙鵬. 砼受壓全過程聲發射b值與分形維數的研究. 實驗力學, 1996, 11(3):272
    [12] Wu K R, Yan A, Yao W, et al. Effect of metallic aggregate on strength and fracture properties of HPC. Cem Concr Res, 2001, 31(1): 113 doi: 10.1016/S0008-8846(00)00431-2
    [13] Yan A, Wu K R, Zhang D, et al. Effect of fracture path on the fracture energy of high-strength concrete. Cem Concr Res, 2001, 31(11): 1601 doi: 10.1016/S0008-8846(01)00610-X
    [14] Xu Z B, Xie H P. The relation between the fractal distribution and the damage evolvement of fracture structure. J Wuhan Univ Technol, 2004, 26(10): 28 doi: 10.3321/j.issn:1671-4431.2004.10.009

    徐志斌, 謝和平. 斷裂構造的分形分布與其損傷演化的關系. 武漢理工大學學報, 2004, 26(10):28 doi: 10.3321/j.issn:1671-4431.2004.10.009
    [15] Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech Mater, 1994, 18(2): 89 doi: 10.1016/0167-6636(94)00008-5
    [16] Carpinteri A, Chiaia B. Crack-resistance behavior as a consequence of sell-similar fracture topologies. Int J Fract, 1996, 76(4): 327 doi: 10.1007/BF00039781
    [17] Qin Z P, Tian Y, Li G, et al. Study on fractal features of flexural performance of reinforced concrete beams strengthened with BFRP sheets. J Basic Sci Eng, 2018, 26(5): 973

    秦子鵬, 田艷, 李剛, 等. BFRP布加固鋼筋混凝土梁抗彎性能的分形特征研究. 應用基礎與工程科學學報, 2018, 26(5):973
    [18] Zhou R Z. Fractal mechanics significance of stress field singularity at crack tip for concrete structures. J Dalian Univ Technol, 1997, 37(Suppl 1): 67

    周瑞忠. 混凝土結構裂紋尖端應力場奇異性的分形力學意義. 大連理工大學學報, 1997, 37(增刊 1):67
    [19] Luan H Y, Fan Y F, Wang D W, et al. Study on the flexural behavior of the CFRP-reinforced concrete beam with fractal theory. Eng Mech, 2015, 32(4): 160

    欒海洋, 范穎芳, 王大為, 等. 基于分形理論的CFRP布增強混凝土梁抗彎性能研究. 工程力學, 2015, 32(4):160
    [20] Jia N, Guo J X, Wen W Q, et al. Three-dimensional characterization of wood surface roughness with improved differential box-counting. J Northeast Forest Univ, 2019, 47(9): 76 doi: 10.3969/j.issn.1000-5382.2019.09.014

    賈娜, 郭佳欣, 溫濰齊, 等. 應用改進差分盒維數法對木材表面粗糙度的三維表征. 東北林業大學學報, 2019, 47(9):76 doi: 10.3969/j.issn.1000-5382.2019.09.014
    [21] Chen S J, Zhang X N. Fractal characteristics of asphalt mixtures based on digital image processing technique. J Build Mater, 2013, 16(3): 451 doi: 10.3969/j.issn.1007-9629.2013.03.013

    陳尚江, 張肖寧. 基于數字圖像處理技術的瀝青混合料分形特性. 建筑材料學報, 2013, 16(3):451 doi: 10.3969/j.issn.1007-9629.2013.03.013
    [22] Cao M S, Ren Q W, Zhai A L, et al. Experimental study on fractal characterization in damages of concrete structures. Rock Soil Mech, 2005, 26(10): 1570 doi: 10.3969/j.issn.1000-7598.2005.10.009

    曹茂森, 任青文, 翟愛良, 等. 混凝土結構損傷的分形特征實驗分析. 巖土力學, 2005, 26(10):1570 doi: 10.3969/j.issn.1000-7598.2005.10.009
    [23] Yang S, Shao L T, Guo X X, et al. Skeleton and fractal law based image recognition algorithm for concrete crack. Chin J Sci Instrum, 2012, 33(8): 1850 doi: 10.3969/j.issn.0254-3087.2012.08.025

    楊松, 邵龍潭, 郭曉霞, 等. 基于骨架和分形的混凝土裂縫圖像識別算法. 儀器儀表學報, 2012, 33(8):1850 doi: 10.3969/j.issn.0254-3087.2012.08.025
    [24] Liu X Y, Li W W, Liang Z P. Application to fractal theory in study on the fracture surfaces of concrete. J China Three Gorges Univ Nat Sci, 2003, 25(6): 495

    劉小艷, 李文偉, 梁正平. 分形理論在混凝土斷裂面研究中的應用. 三峽大學學報(自然科學版), 2003, 25(6):495
    [25] Wang J A, Xie H P, Tian X Y, et al. Direct fractal measurement of fracture surfaces. J Univ Sci Technol Beijing, 1999, 21(1): 6 doi: 10.3321/j.issn:1001-053X.1999.01.002

    王金安, 謝和平, 田曉燕, 等. 一種新的斷裂表面分形測量方法. 北京科技大學學報, 1999, 21(1):6 doi: 10.3321/j.issn:1001-053X.1999.01.002
    [26] Yan A, Wu K R, Zhang D, et al. Study on the multi-fractal characterization of fracture surface of concrete materials. J Build Mater, 2002, 5(1): 46 doi: 10.3969/j.issn.1007-9629.2002.01.009

    嚴安, 吳科如, 張東, 等. 混凝土材料斷裂表面的多重分形特征研究. 建筑材料學報, 2002, 5(1):46 doi: 10.3969/j.issn.1007-9629.2002.01.009
    [27] Zhang Q L, Hou G T, Pan W Q, et al. Fractal study on structural fracture. J Basic Sci Eng, 2011, 19(6): 853 doi: 10.3969/j.issn.1005-0930.2011.06.001

    張慶蓮, 侯貴廷, 潘文慶, 等. 構造裂縫的分形研究. 應用基礎與工程科學學報, 2011, 19(6):853 doi: 10.3969/j.issn.1005-0930.2011.06.001
  • 加載中
圖(15) / 表(6)
計量
  • 文章訪問數:  1369
  • HTML全文瀏覽量:  584
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-19
  • 網絡出版日期:  2021-03-24
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回