<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

連鑄坯脫氫退火數值模擬

姜東濱 智建國 宋海 高勇 張立峰

姜東濱, 智建國, 宋海, 高勇, 張立峰. 連鑄坯脫氫退火數值模擬[J]. 工程科學學報, 2020, 42(7): 862-868. doi: 10.13374/j.issn2095-9389.2020.03.16.003
引用本文: 姜東濱, 智建國, 宋海, 高勇, 張立峰. 連鑄坯脫氫退火數值模擬[J]. 工程科學學報, 2020, 42(7): 862-868. doi: 10.13374/j.issn2095-9389.2020.03.16.003
JIANG Dong-bin, ZHI Jian-guo, SONG Hai, GAO Yong, ZHANG Li-feng. Numerical simulation of dehydrogenation annealing in bloom[J]. Chinese Journal of Engineering, 2020, 42(7): 862-868. doi: 10.13374/j.issn2095-9389.2020.03.16.003
Citation: JIANG Dong-bin, ZHI Jian-guo, SONG Hai, GAO Yong, ZHANG Li-feng. Numerical simulation of dehydrogenation annealing in bloom[J]. Chinese Journal of Engineering, 2020, 42(7): 862-868. doi: 10.13374/j.issn2095-9389.2020.03.16.003

連鑄坯脫氫退火數值模擬

doi: 10.13374/j.issn2095-9389.2020.03.16.003
基金項目: 國家自然科學基金資助項目(U186026,51725402,51904024);中央高校基本科研業務費資助項目(FRF-TP-18-098A1);中國國家重點研發計劃專項資助項目(2017YFB0304001);博士后科學基金面上資助項目(2018M641194)
詳細信息
    作者簡介:

    jiangdongbin@ustb.edu.cn姜東濱

    通訊作者:

    E-mail: zhanglifeng@ysu.edu.cn

  • 中圖分類號: TF777.2

Numerical simulation of dehydrogenation annealing in bloom

More Information
  • 摘要: 采用數學模擬方法研究鋼軌鋼連鑄坯脫氫退火行為,分析不同退火溫度、退火時間條件下連鑄坯脫氫效果,優化了脫氫退火工藝。在脫氫退火過程中,連鑄坯角部和邊部的氫含量快速降低,而連鑄坯中心氫含量在加熱段后期開始降低;隨著退火溫度的升高,連鑄坯中心脫氫的起始點明顯提前,最大脫氫速率顯著增加。隨著均熱段時間逐漸延長,連鑄坯中心氫含量明顯降低,但脫氫速率的增加幅度逐漸減小。通過優化脫氫退火工藝參數,連鑄坯中心氫的質量分數能夠降低至0.6×10?6,脫氫效果顯著。

     

  • 圖  1  數學模型

    Figure  1.  Mathematical model

    圖  2  連鑄坯溫度變化。(a)升溫曲線;(b)橫截面溫度場分布

    Figure  2.  Temperature variation of bloom: (a) heating curve; (b) temperature field in the cross section

    圖  3  連鑄坯氫質量分數的變化。(a)角部、邊部、中心的氫質量分數;(b)連鑄坯寬度方向氫分布

    Figure  3.  Variation of hydrogen mass fraction: (a) hydrogen mass fraction in the corner, edge and center of bloom; (b) hydrogen distribution in the lateral direction

    圖  4  連鑄坯橫截面氫質量分數分布

    Figure  4.  Hydrogen distribution in cross section of bloom

    圖  5  不同溫度對連鑄坯脫氫的影響。(a)中心溫度變化;(b)中心脫氫速率變化

    Figure  5.  Effect of annealing temperature on dehydrogenation: (a) center temperature variation; (b) center dehydrogenation rate variation

    圖  6  連鑄坯氫質量分數變化。(a)中心氫質量分數變化;(b)氫質量分數沿寬度方向分布

    Figure  6.  Variation of hydrogen mass fraction in bloom: (a) center hydrogen mass fraction; (b) hydrogen mass fraction in the lateral direction

    圖  7  不同保溫時間條件下連鑄坯脫氫。(a)連鑄坯中心溫度;(b)中心脫氫速率變化

    Figure  7.  Dehydrogenation of bloom with different soaking times: (a) center temperature variation; (b) center dehydrogenation rate variation

    圖  8  連鑄坯中心氫質量分數變化。(a)中心氫質量分數;(b)中心脫氫率

    Figure  8.  Variation of center hydrogen mass fraction: (a) center hydrogen mass fraction (b) center dehydrogenation efficiency

    圖  9  不同保溫時間條件下連鑄坯脫氫。(a)橫截面氫質量分數;(b)中心氫質量分數變化

    Figure  9.  Dehydrogenation of bloom with different soaking times: (a) distribution of hydrogen mass fraction; (b) center hydrogen mass fraction variation

    圖  10  脫氫試驗結果

    Figure  10.  Results of dehydrogenation test

    表  1  模型參數

    Table  1.   Physical parameter used in the model

    ItemValue
    Density/(kg?m?3)7000
    Specific heat capacity/(J·kg?1·K?1)690
    Thermal conductivity/(W·m?1·K?1)28
    Equilibrium hydrogen content/10?60.06
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Liu Q L, Zhou Q J, Venezuela J, et al. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction. Corros Rev, 2016, 34(3): 127 doi: 10.1515/corrrev-2015-0083
    [2] Hu Z H. Improvement of hydrogen removal from 120 t VD. Met Mater Metall Eng, 2014, 42(2): 36

    胡振華. 改善120 t VD脫氫效果的研究. 金屬材料與冶金工程, 2014, 42(2):36
    [3] Chen A M. A study on 210 t RH vacuum degas process at a sheet works. Special Steel, 2012, 33(6): 16 doi: 10.3969/j.issn.1003-8620.2012.06.005

    陳愛梅. 薄板廠210 t RH脫氣工藝研究. 特殊鋼, 2012, 33(6):16 doi: 10.3969/j.issn.1003-8620.2012.06.005
    [4] Zhu B H, Chattopadhyay K, Hu X P, et al. Optimization of sampling location in the ladle during RH vacuum refining process. Vacuum, 2018, 152: 30 doi: 10.1016/j.vacuum.2018.02.033
    [5] Ling H T, Zhang L F. Numerical simulation of gas and liquid two-phase flow in the RH process. Metall Mater Trans B, 2019, 50(4): 2017 doi: 10.1007/s11663-019-01583-3
    [6] Mukherjee D, Shukla A K, Senk D. Prediction of decarburisation process along with hydrogen and nitrogen removal by mathematical modelling of RH degassing process. Ironmaking Steelmaking, 2018, 45(5): 412 doi: 10.1080/03019233.2016.1274847
    [7] Chen G J, He S P. Circulation flow rate and decarburization in the RH degasser under low atmospheric pressure. Vacuum, 2018, 153: 132 doi: 10.1016/j.vacuum.2018.04.007
    [8] Wei J H. Mathematical modeling of the vacuum circulation refining process of molten steel. J Shanghai Univ, 2003, 7(2): 97 doi: 10.1007/s11741-003-0077-9
    [9] Bucur L, Bucur G, Moise A G, et al. Finite element method applied to mathematical modelling of the hydrogen diffusion process in metals. Rev Chim, 2016, 67(1): 87
    [10] Zhang F C, Zhang X S, Li C F, et al. First-principles calculations on the diffusion behaviors of hydrogen atom in α-Fe and γ-Fe. J Atom Mol Phys, 2020, 37(3): 397

    張鳳春, 張小山, 李春福, 等. α-Fe和γ-Fe中氫擴散行為的第一性原理計算. 原子與分子物理學報, 2020, 37(3):397
    [11] Liu X K, Wang J J, Lu M X, et al. An analysisof hydrogen diffusion process in metals by boundary element analysis. J Xi'an Petrol Inst, 1992, 7(1): 24

    劉曉坤, 王建軍, 路民旭, 等. 金屬內氫擴散過程的邊界元分析. 西安石油學院學報, 1992, 7(1):24
    [12] Tao P, Wang Y F, Gong J M, et al. Simulation of hydrogen diffusion in duplex stainless steel. J Shanghai Jiaotong Univ, 2018, 52(9): 1086

    陶平, 王艷飛, 鞏建鳴, 等. 氫在雙相不銹鋼中的擴散模擬. 上海交通大學學報, 2018, 52(9):1086
    [13] Fan J K, Hou G J, Peng B, et al. Activation and diffusion model of hydrogen in steel under microcosmic condition and its influencing factors. Heat Treat Met, 2019, 44(3): 197

    范俊鍇, 侯高杰, 彭波, 等. 微觀視域下鋼內氫的溫度激發擴散模型及影響因素. 金屬熱處理, 2019, 44(3):197
    [14] You J D, Yang Y T, Zhang H K, et al. Numerical simulation to dehydrogenation annealing process of Cr5 steel. Shanghai Met, 2011, 33(1): 59 doi: 10.3969/j.issn.1001-7208.2011.01.013

    游佳迪, 楊弋濤, 張洪奎, 等. Cr5鋼錠去氫退火過程的數學模擬. 上海金屬, 2011, 33(1):59 doi: 10.3969/j.issn.1001-7208.2011.01.013
    [15] Tan T Y, Du F S, Li J, et al. Finite element analysis of hydrogen diffusion in large forgings. J Plast Eng, 2017, 24(1): 180

    譚天宇, 杜鳳山, 李杰, 等. 大型鍛件中氫擴散的研究. 塑性工程學報, 2017, 24(1):180
    [16] Yang D, Xu S P, Huang H Q, et al. Numerical simulation of hydrogen diffusion in steel plate. Res Iron Steel, 2016, 44(1): 19

    楊東, 許少普, 黃紅乾, 等. 鋼板中氫擴散的數值模擬. 鋼鐵研究, 2016, 44(1):19
    [17] Wang W H, Li Z J, Chu R S, et al. Hydrogen diffusion in slab for stacking slow-cooling. Iron Steel, 2019, 54(11): 49

    王衛華, 李戰軍, 初仁生, 等. 堆冷方式下板坯氫擴散效果. 鋼鐵, 2019, 54(11):49
    [18] Tao P, Gong J M, Wang Y F, et al. Modeling of hydrogen diffusion in duplex stainless steel based on microstructure using finite element method. Int J Pressure Vessels Piping, 2020, 180: 104031 doi: 10.1016/j.ijpvp.2019.104031
    [19] Sezgin J G, Bosch C, Montouchet A, et al. Modelling and simulation of hydrogen redistribution in a heterogeneous alloy during the cooling down to 200 ℃. Int J Hydrogen Energy, 2017, 42(30): 19346 doi: 10.1016/j.ijhydene.2017.03.095
    [20] Yan C Y, Liu C Y, Yan B. 3D modeling of the hydrogen distribution in X80 pipeline steel welded joints. Comput Mater Sci, 2014, 83: 158 doi: 10.1016/j.commatsci.2013.11.007
    [21] Li L F, Song B, Cai Z Y, et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel. Mater Sci Eng A, 2019, 742: 712 doi: 10.1016/j.msea.2018.09.048
    [22] Ilin D N, Saintier N, Olive J M, et al. Simulation of hydrogen diffusion affected by stress-strain heterogeneity in polycrystalline stainless steel. Int J Hydrogen Energy, 2014, 39(5): 2418 doi: 10.1016/j.ijhydene.2013.11.065
    [23] Jiang P, Yuan T X, Chen W X, et al. Microstructure and mechanical properties of V-Ti-Ni alloy for hydrogen separation with heat treatment process. Chin J Rare Met, 2018, 42(12): 1260

    江鵬, 袁同心, 肖思進, 等. 熱處理工藝對V-Ti-Ni氫分離合金顯微組織和硬度的影響. 稀有金屬, 2018, 42(12):1260
    [24] Cui L, Gao Y, Gu C S, et al. Effect of trace element Cr on microstructures and properties of welded joints of marine corrosion resisting steels. J Beijing Univ Technol, 2018, 44(6): 953

    崔麗, 高艷, 顧長石, 等. 微量元素Cr對船用耐蝕鋼焊接接頭組織和性能的影響. 北京工業大學學報, 2018, 44(6):953
    [25] Olden V, Saai A, Jemblie L, et al. FE simulation of hydrogen diffusion in duplex stainless steel. Int J Hydrogen Energy, 2014, 39(2): 1156 doi: 10.1016/j.ijhydene.2013.10.101
    [26] Xian A P, Li P J, Chen W X, et al. Hydrogen escape form heavy rail steel bloom by stack cooling at Panzhihua iron and steel company. Acta Metall Sinica, 1993, 29(6): A273

    冼愛平, 李培基, 陳文繡, 等. 攀鋼重軌鋼初軋坯堆冷的除氫效果. 金屬學報, 1993, 29(6):A273
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  1346
  • HTML全文瀏覽量:  1012
  • PDF下載量:  70
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-16
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回