Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation
-
摘要: 通過浮選試驗、X射線光電子能譜(XPS)分析和吸附量測試分析,研究了高錳酸鉀和海藻酸鈉對黃銅礦、方鉛礦和閃鋅礦三種硫化礦物浮選的影響,考察了高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用機理。浮選試驗結果表明,單獨使用高錳酸鉀或海藻酸鈉均無法實現對閃鋅礦的選擇性抑制。同時添加適量高錳酸鉀和海藻酸鈉對閃鋅礦具有選擇性的協同抑制作用,而對黃銅礦和方鉛礦浮選的影響較小。XPS分析結果表明,海藻酸鈉與閃鋅礦表面氧化產生的氧化鋅、氫氧化鋅或硫酸鋅等氧化物發生化學吸附,而不與未氧化的閃鋅礦表面發生吸附。吸附量測試結果表明,高錳酸鉀對閃鋅礦的預先氧化作用顯著增加了海藻酸鈉在閃鋅礦表面的吸附量,因此高錳酸鉀可以強化海藻酸鈉對閃鋅礦的抑制作用。Abstract: Zinc is an important raw material and nonferrous metal that has an extremely important role in the development of national economies. For this reason, countries around the world continue to strengthen their research efforts on the development and utilization of zinc resources. Sphalerite is an important source of zinc metal, which often coexists with chalcopyrite, galena, and pyrite in nature. The flotation separation of complex polymetallic sulfide ore is a difficult problem in the field of mineral processing engineering. To achieve the flotation separation of chalcopyrite, galena, and other minerals from sphalerite, depressants are needed. Due to the difficulty of activation after the depression of galena and other sulfide ores, a zinc depression and lead floatation process is usually used. The choice of the sphalerite depressant is critical when separating zinc and other sulfides. The traditional sphalerite depressants are generally inorganic. Although these depressants significantly improve the hydrophilicity of the sphalerite surface and strongly depress the sphalerite, they have a certain inhibitory effect on other sulfide ores while depressing the sphalerite. In addition, these agents are difficult to degrade and have a negative impact on the environment. To achieve high-efficiency flotation separation of sphalerite and sulfide minerals and improve the quality of the concentrate products, the development of new inhibitors is becoming increasingly important. Thence, the effect of the oxidizer potassium permanganate and organic depressant sodium alginate on the flotation of three kinds of sulfide minerals are studied, including chalcopytite, galena, and sphalerite. The investigations involved flotation tests, X-ray photoelectron spectroscopy (XPS) analysis, adsorption behavior analysis, with an additional focus on the mechanism of potassium permanganate strengthening, and sodium alginate depression of sphalerite flotation. The flotation results show that adding either an oxidizer or sodium alginate alone does not enable the selective depression of sphalerite. However, adding a certain amount of oxidizer and sodium alginate together can realize the selective coordinated depression of sphalerite, with little effect on the flotation of chalcopytite and galena. The XPS analysis results show that sodium alginate is chemically adsorbed on the sphalerite surface with oxidation products such as zinc oxide, zinc hydroxide, or zinc sulfate, but is not adsorbed on an unoxidized sphalerite surface. The adsorption test results show that the preoxidation of potassium permanganate on sphalerite significantly increases the adsorption capacity of sodium alginate on the sphalerite surface. Therefore, potassium permanganate can strengthen the sodium alginate depression of sphalerite flotation.
-
Key words:
- sphalerite /
- flotation /
- depressant /
- sodium alginate /
- potassium permanganate /
- oxidation /
- depression mechanism
-
表 1 硫化礦物樣品的化學組成分析
Table 1. Chemical compositions of sulfide samples
% Sample Elemental mass concentration Purity Cu TFe S Zn Pb Chalcopyrite 32.91 29.06 33.25 — — 95.23 Galena — — 13.11 — 84.71 97.82 Sphalerite — — 31.56 64.38 — 95.95 表 2 藥劑作用前后閃鋅礦表面元素的原子數分數
Table 2. Atomic content of elements on the surface of sphalerite before and after its interaction with reagents
% Sample Zn 2p S 2p C 1s O 1s Sphalerite 36.46 32.95 14.40 14.99 Sphalerite+sodium alginate 14.92 15.70 39.08 30.30 Sphalerite+KMnO4 20.75 17.05 27.25 34.95 Sphalerite+KMnO4+sodium alginate 11.98 11.65 38.82 37.56 www.77susu.com -
參考文獻
[1] Yang R L. Analysis of current situation of lead and zinc mine resources development and suggestions for sustainable development in China. Miner Resour, 2018(1): 148楊榮林. 淺析我國鉛鋅礦資源開發現狀及可持續發展建議. 礦產資源, 2018(1):148 [2] Jia Y W. Experimental research on copper-lead flotation separation of a Cu-Pb-Zn sulfide ore in Yunnan. Min Metall Eng, 2009, 29(4): 47 doi: 10.3969/j.issn.0253-6099.2009.04.013賈仰武. 云南某銅鉛鋅硫化礦銅鉛分離浮選試驗研究. 礦冶工程, 2009, 29(4):47 doi: 10.3969/j.issn.0253-6099.2009.04.013 [3] Wang M Y, Gao W, Wang L. Process mineralogy study on an Au polymetallic ore in Yunnan. Nonferrous Met (Miner Process Sect) , 2016(3): 1王明燕, 郜偉, 王玲. 云南某金多金屬礦的工藝礦物學研究. 有色金屬(選礦部分), 2016(3):1 [4] Ran Y H, Xiao D S, Du J M, et al. Study on flotation test of a copper-lead-zinc polymetallic sulfide ore. Mod Min, 2019(4): 114 doi: 10.3969/j.issn.1674-6082.2019.04.030冉銀華, 肖東升, 杜建明, 等. 某銅鉛鋅多金屬硫化礦浮選試驗研究. 現代礦業, 2019(4):114 doi: 10.3969/j.issn.1674-6082.2019.04.030 [5] Jian S, Sun W, Hu Y H. Beneficiation technique for complex polymetallic sulfide ore from Inner Mongolia. Min Metall Eng, 2019, 39(4): 50 doi: 10.3969/j.issn.0253-6099.2019.04.012簡勝, 孫偉, 胡岳華. 內蒙古某復雜多金屬硫化礦選礦技術研究. 礦冶工程, 2019, 39(4):50 doi: 10.3969/j.issn.0253-6099.2019.04.012 [6] Deng J S, Mao Y B, Wen S M, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals. Int J Miner Metall Mater, 2015, 22(2): 111 [7] Sun W, Su J F, Zhang G, et al. Separation of sulfide lead-zinc-silver ore under low alkalinity condition. J Cent South Univ, 2012, 19(8): 2307 [8] Wang H, Wen S M, Han G, et al. Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate. Miner Eng, 2020, 146: 106132 [9] Sun W, Dong Y H, Zhang G. Application of sodium sulphide in the separation of lead-copper. Met Mine, 2010(10): 44孫偉, 董艷紅, 張剛. 硫化鈉在銅鉛分離中的應用. 金屬礦山, 2010(10):44 [10] Shen W Z, Fornasiero D, Ralston J. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int J Miner Process, 2001, 63(1): 17 [11] Xue C, Wei Z C. Reaction mechanism and research progress of depressants in sphalerite flotation. Multipurpose Utiliz Miner Resour, 2017(3): 38 doi: 10.3969/j.issn.1000-6532.2017.03.006薛晨, 魏志聰. 閃鋅礦抑制劑的作用機理及研究進展. 礦產綜合利用, 2017(3):38 doi: 10.3969/j.issn.1000-6532.2017.03.006 [12] Laskowski J S, Liu Q, O'Connor C T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface. Int J Miner Process, 2007, 84(1-4): 59 [13] Qin W Q, Wei Q, Jiao F, et al. Utilization of polysaccharides as depressants for the flotation separation of copper/lead concentrate. Int J Min Sci Technol, 2013, 23(2): 179 [14] Wang C T, Liu R Q, Khoso S A, et al. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides. Miner Eng, 2020, 150: 106274 [15] Sarquis P E, Menendez - Aguado J M, Mahamud M M, et al. Tannins: The organic depressants alternative in selective flotation of sulfides. J Clean Prod, 2014, 84: 723 [16] Li J M, Song K W, Liu D W, et al. Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite. J Mol Liquids, 2017, 231: 485 [17] Liu R Z, Qin W Q, Jiao F, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Trans Nonferrous Met Soc China, 2016, 26(1): 265 [18] López-Valdivieso A, Lozano-Ledesma L A, Robledo-Cabrera A, et al. Carboxymethylcellulose (CMC) as PbS depressant in the processing of Pb-Cu bulk concentrates. Adsorption and floatability studies. Miner Eng, 2017, 112: 77 [19] Chen W, Feng Q M, Zhang G F, et al. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner Eng, 2017, 113: 1 [20] Feng B, Zhang W P, Guo W, et al. Role and mechanism of combined collector and sodium alginate in flotation separation of scheelite and calcite. Chin J Nonferrous Met, 2019, 29(1): 203馮博, 張文譜, 郭蔚, 等. 組合捕收劑及海藻酸鈉在白鎢礦和方解石浮選分離中的作用及機理. 中國有色金屬學報, 2019, 29(1):203 [21] Jiao F, Dong L Y, Qin W Q, et al. Flotation separation of scheelite from calcite using pectin as depressant. Miner Eng, 2019, 136: 120 [22] Skinner W M, Prestidge C A, Smart R S C. Irradiation effects during XPS studies of Cu(II) activation of zinc sulphide. Surf Interface Anal, 1996, 24(9): 620 [23] Feng B, Guo Y T, Wang T, et al. Role and mechanism of oxidizer in flotation separation of galena and sphalerite using locust bean gum as depressant. J Cent South Univ Sci Technol, 2020, 51(1): 1 doi: 10.11817/j.issn.1672-7207.2020.01.001馮博, 郭宇濤, 王濤, 等. 氧化劑在刺槐豆膠浮選分離方鉛礦和閃鋅礦中的作用及機理. 中南大學學報(自然科學版), 2020, 51(1):1 doi: 10.11817/j.issn.1672-7207.2020.01.001 [24] Feng B, Zhong C H, Zhang L Z, et al. Effect of surface oxidation on the depression of sphalerite by locust bean gum. Miner Eng, 2020, 146: 106142 [25] Siriwardane R V, Poston J A. Interaction of H2S with zinc titanate in the presence of H2 and CO. Appl Surf Sci, 1990, 45(2): 131 -