<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用及機理

馮博 鐘春暉 張良柱 彭金秀 郭宇濤 王濤 寧湘菡 汪惠惠

馮博, 鐘春暉, 張良柱, 彭金秀, 郭宇濤, 王濤, 寧湘菡, 汪惠惠. 高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用及機理[J]. 工程科學學報, 2021, 43(5): 612-618. doi: 10.13374/j.issn2095-9389.2020.03.16.002
引用本文: 馮博, 鐘春暉, 張良柱, 彭金秀, 郭宇濤, 王濤, 寧湘菡, 汪惠惠. 高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用及機理[J]. 工程科學學報, 2021, 43(5): 612-618. doi: 10.13374/j.issn2095-9389.2020.03.16.002
FENG Bo, ZHONG Chun-hui, ZHANG Liang-zhu, PENG Jin-xiu, GUO Yu-tao, WANG Tao, NING Xiang-han, WANG Hui-hui. Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation[J]. Chinese Journal of Engineering, 2021, 43(5): 612-618. doi: 10.13374/j.issn2095-9389.2020.03.16.002
Citation: FENG Bo, ZHONG Chun-hui, ZHANG Liang-zhu, PENG Jin-xiu, GUO Yu-tao, WANG Tao, NING Xiang-han, WANG Hui-hui. Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation[J]. Chinese Journal of Engineering, 2021, 43(5): 612-618. doi: 10.13374/j.issn2095-9389.2020.03.16.002

高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用及機理

doi: 10.13374/j.issn2095-9389.2020.03.16.002
基金項目: 國家自然科學基金資助項目(51664020);江西省自然科學基金資助項目(20181BAB206021);礦物加工科學與技術國家重點實驗室開放基金資助項目(BGRIMM-KJSKL-2020-12)
詳細信息
    通訊作者:

    E-mail:fengbo319@163.com

  • 中圖分類號: TD952

Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation

More Information
  • 摘要: 通過浮選試驗、X射線光電子能譜(XPS)分析和吸附量測試分析,研究了高錳酸鉀和海藻酸鈉對黃銅礦、方鉛礦和閃鋅礦三種硫化礦物浮選的影響,考察了高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用機理。浮選試驗結果表明,單獨使用高錳酸鉀或海藻酸鈉均無法實現對閃鋅礦的選擇性抑制。同時添加適量高錳酸鉀和海藻酸鈉對閃鋅礦具有選擇性的協同抑制作用,而對黃銅礦和方鉛礦浮選的影響較小。XPS分析結果表明,海藻酸鈉與閃鋅礦表面氧化產生的氧化鋅、氫氧化鋅或硫酸鋅等氧化物發生化學吸附,而不與未氧化的閃鋅礦表面發生吸附。吸附量測試結果表明,高錳酸鉀對閃鋅礦的預先氧化作用顯著增加了海藻酸鈉在閃鋅礦表面的吸附量,因此高錳酸鉀可以強化海藻酸鈉對閃鋅礦的抑制作用。

     

  • 圖  1  硫化礦物樣品的X射線衍射圖譜

    Figure  1.  XRD patterns of sulfide samples

    圖  2  海藻酸鈉對硫化礦物浮選的影響(c(PBX)=1×10?4 mol·L?1c(MIBC)=1×10?4 mol·L?1;pH值為7;c為濃度)

    Figure  2.  Effect of sodium alginate dosage on the flotation of sulfides (c(PBX)=1×10?4 mol·L?1; c(MIBC)=1×10?4 mol·L?1; pH is 7;c is molar concentration)

    圖  3  高錳酸鉀對硫化礦物浮選的影響(c(PBX)=1×10?4 mol·L?1c(MIBC)=1×10?4 mol·L?1; pH值為7)

    Figure  3.  Effect of oxidizer dosage on the flotation of sulfides (c(PBX)=1×10?4 mol·L?1; c(MIBC)=1×10?4 mol·L?1; pH is 7)

    圖  4  高錳酸鉀和海藻酸鈉對硫化礦浮選的影響(c(PBX)=1×10?4 mol·L?1c(MIBC)=1×10?4 mol·L?1; c(KMnO4)=1.63×10?3 mol·L?1;pH值為7)

    Figure  4.  Effect of oxidizer and sodium alginate on the flotation of sulfides (c(PBX)=1×10?4 mol·L?1; c(MIBC)=1×10?4 mol·L?1; c(KMnO4)=1.63×10?3 mol·L?1; pH is 7)

    圖  5  閃鋅礦表面全譜掃描譜圖

    Figure  5.  XPS spectra of sphalerite

    Note: a—sphalerite; b—sphalerite with sodium alginate; c—sphalerite with KMnO4; d—sphalerite with KMnO4 and sodium alginate.

    圖  6  閃鋅礦表面鋅元素的窄區掃描譜圖。(a)閃鋅礦;(b)閃鋅礦+海藻酸鈉;(c)閃鋅礦+高錳酸鉀;(d)閃鋅礦+高錳酸鉀+海藻酸鈉

    Figure  6.  Resolved narrow-scan Zn 2p spectra: (a) sphalerite; (b) sphalerite with sodium alginate; (c) sphalerite with KMnO4; (d) sphalerite with KMnO4 and sodium alginate

    圖  7  海藻酸鈉在閃鋅礦表面的吸附行為(c(KMnO4) =1.63×10?3 mol·L?1; pH值為7)

    Figure  7.  Adsorption behavior of sodium alginate on sphalerite (c(KMnO4)=1.63×10?3 mol·L?1; pH is 7)

    表  1  硫化礦物樣品的化學組成分析

    Table  1.   Chemical compositions of sulfide samples %

    SampleElemental mass concentrationPurity
    CuTFeSZnPb
    Chalcopyrite32.9129.0633.2595.23
    Galena13.1184.7197.82
    Sphalerite31.5664.3895.95
    下載: 導出CSV

    表  2  藥劑作用前后閃鋅礦表面元素的原子數分數

    Table  2.   Atomic content of elements on the surface of sphalerite before and after its interaction with reagents %

    SampleZn 2pS 2pC 1sO 1s
    Sphalerite36.4632.9514.4014.99
    Sphalerite+sodium alginate14.9215.7039.0830.30
    Sphalerite+KMnO420.7517.0527.2534.95
    Sphalerite+KMnO4+sodium alginate11.9811.6538.8237.56
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yang R L. Analysis of current situation of lead and zinc mine resources development and suggestions for sustainable development in China. Miner Resour, 2018(1): 148

    楊榮林. 淺析我國鉛鋅礦資源開發現狀及可持續發展建議. 礦產資源, 2018(1):148
    [2] Jia Y W. Experimental research on copper-lead flotation separation of a Cu-Pb-Zn sulfide ore in Yunnan. Min Metall Eng, 2009, 29(4): 47 doi: 10.3969/j.issn.0253-6099.2009.04.013

    賈仰武. 云南某銅鉛鋅硫化礦銅鉛分離浮選試驗研究. 礦冶工程, 2009, 29(4):47 doi: 10.3969/j.issn.0253-6099.2009.04.013
    [3] Wang M Y, Gao W, Wang L. Process mineralogy study on an Au polymetallic ore in Yunnan. Nonferrous Met (Miner Process Sect), 2016(3): 1

    王明燕, 郜偉, 王玲. 云南某金多金屬礦的工藝礦物學研究. 有色金屬(選礦部分), 2016(3):1
    [4] Ran Y H, Xiao D S, Du J M, et al. Study on flotation test of a copper-lead-zinc polymetallic sulfide ore. Mod Min, 2019(4): 114 doi: 10.3969/j.issn.1674-6082.2019.04.030

    冉銀華, 肖東升, 杜建明, 等. 某銅鉛鋅多金屬硫化礦浮選試驗研究. 現代礦業, 2019(4):114 doi: 10.3969/j.issn.1674-6082.2019.04.030
    [5] Jian S, Sun W, Hu Y H. Beneficiation technique for complex polymetallic sulfide ore from Inner Mongolia. Min Metall Eng, 2019, 39(4): 50 doi: 10.3969/j.issn.0253-6099.2019.04.012

    簡勝, 孫偉, 胡岳華. 內蒙古某復雜多金屬硫化礦選礦技術研究. 礦冶工程, 2019, 39(4):50 doi: 10.3969/j.issn.0253-6099.2019.04.012
    [6] Deng J S, Mao Y B, Wen S M, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals. Int J Miner Metall Mater, 2015, 22(2): 111
    [7] Sun W, Su J F, Zhang G, et al. Separation of sulfide lead-zinc-silver ore under low alkalinity condition. J Cent South Univ, 2012, 19(8): 2307
    [8] Wang H, Wen S M, Han G, et al. Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate. Miner Eng, 2020, 146: 106132
    [9] Sun W, Dong Y H, Zhang G. Application of sodium sulphide in the separation of lead-copper. Met Mine, 2010(10): 44

    孫偉, 董艷紅, 張剛. 硫化鈉在銅鉛分離中的應用. 金屬礦山, 2010(10):44
    [10] Shen W Z, Fornasiero D, Ralston J. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int J Miner Process, 2001, 63(1): 17
    [11] Xue C, Wei Z C. Reaction mechanism and research progress of depressants in sphalerite flotation. Multipurpose Utiliz Miner Resour, 2017(3): 38 doi: 10.3969/j.issn.1000-6532.2017.03.006

    薛晨, 魏志聰. 閃鋅礦抑制劑的作用機理及研究進展. 礦產綜合利用, 2017(3):38 doi: 10.3969/j.issn.1000-6532.2017.03.006
    [12] Laskowski J S, Liu Q, O'Connor C T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface. Int J Miner Process, 2007, 84(1-4): 59
    [13] Qin W Q, Wei Q, Jiao F, et al. Utilization of polysaccharides as depressants for the flotation separation of copper/lead concentrate. Int J Min Sci Technol, 2013, 23(2): 179
    [14] Wang C T, Liu R Q, Khoso S A, et al. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides. Miner Eng, 2020, 150: 106274
    [15] Sarquis P E, Menendez - Aguado J M, Mahamud M M, et al. Tannins: The organic depressants alternative in selective flotation of sulfides. J Clean Prod, 2014, 84: 723
    [16] Li J M, Song K W, Liu D W, et al. Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite. J Mol Liquids, 2017, 231: 485
    [17] Liu R Z, Qin W Q, Jiao F, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Trans Nonferrous Met Soc China, 2016, 26(1): 265
    [18] López-Valdivieso A, Lozano-Ledesma L A, Robledo-Cabrera A, et al. Carboxymethylcellulose (CMC) as PbS depressant in the processing of Pb-Cu bulk concentrates. Adsorption and floatability studies. Miner Eng, 2017, 112: 77
    [19] Chen W, Feng Q M, Zhang G F, et al. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner Eng, 2017, 113: 1
    [20] Feng B, Zhang W P, Guo W, et al. Role and mechanism of combined collector and sodium alginate in flotation separation of scheelite and calcite. Chin J Nonferrous Met, 2019, 29(1): 203

    馮博, 張文譜, 郭蔚, 等. 組合捕收劑及海藻酸鈉在白鎢礦和方解石浮選分離中的作用及機理. 中國有色金屬學報, 2019, 29(1):203
    [21] Jiao F, Dong L Y, Qin W Q, et al. Flotation separation of scheelite from calcite using pectin as depressant. Miner Eng, 2019, 136: 120
    [22] Skinner W M, Prestidge C A, Smart R S C. Irradiation effects during XPS studies of Cu(II) activation of zinc sulphide. Surf Interface Anal, 1996, 24(9): 620
    [23] Feng B, Guo Y T, Wang T, et al. Role and mechanism of oxidizer in flotation separation of galena and sphalerite using locust bean gum as depressant. J Cent South Univ Sci Technol, 2020, 51(1): 1 doi: 10.11817/j.issn.1672-7207.2020.01.001

    馮博, 郭宇濤, 王濤, 等. 氧化劑在刺槐豆膠浮選分離方鉛礦和閃鋅礦中的作用及機理. 中南大學學報(自然科學版), 2020, 51(1):1 doi: 10.11817/j.issn.1672-7207.2020.01.001
    [24] Feng B, Zhong C H, Zhang L Z, et al. Effect of surface oxidation on the depression of sphalerite by locust bean gum. Miner Eng, 2020, 146: 106142
    [25] Siriwardane R V, Poston J A. Interaction of H2S with zinc titanate in the presence of H2 and CO. Appl Surf Sci, 1990, 45(2): 131
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數:  2649
  • HTML全文瀏覽量:  950
  • PDF下載量:  74
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-16
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回