Effects of carbon, aluminum and silicon on the dissolution rate of nitrogen into molten iron
-
摘要: 通過15N-14N同位素氣體交換技術消除液相傳質的影響,利用在線質譜分析儀測定了在1873 K下,鐵液中氮溶解的界面反應速率常數。結果表明,總流量為600~800 mL?min?1時可以忽略氣相傳質的影響,保護氣中增加H2的比例有利于降低鋼液中雜質元素的濃度。鐵液中加入一定量碳、鋁、硅,分析得到這三種元素對氮溶解速率是抑制的。依據本實驗的數據利用空位解離模型建立反應速率常數ka與氧、硫、碳、鋁、硅的活度關系,吸附系數分別是KO=0.96,KS=9.32,KC=0.02,KAl=0.51,KSi=1.16。純鐵液中氮的溶解反應表觀速率常數為ka=4.8×10?6 mol?m?2?s?Pa。Abstract: Nitrogen in the steel can either improve or weaken the performance, as well as reduce product. In the flow of producing steel, it is of paramount importance to adopt some measures to restrain or promote nitrogen dissolution in controlling the nitrogen content in the final product. The dissolution of nitrogen into molten iron in 1873 K has been measured by 15N-14N isotope exchange technology and online mass spectrometer. The results show that 600?800 mL·min?1 of gas flow rate removes the effect of gas transfer, and increasing the hydrogen content in shielding gas decreases the content of impurity element. A certain amount of C, Al or Si was added to the molten iron, and the three elements were inhibited from the nitrogen dissolution rate. Based on the values of the work and using the dissociation determining model, the reaction apparent rate constant, ka, was built the relationship with the content of oxygen, sulfur, carbon, aluminum and silicon. The adsorption coefficients were calculated to be KO=0.96, KS=9.32, KC=0.02, KAl=0.51 and KSi=1.16, respectively. The nitrogen dissolution reaction apparent rate constant in pure liquid iron is ka=4.8×10?6 mol?m?2?s?Pa.
-
Key words:
- kinetics /
- isotope exchange technology /
- nitrogen dissolution /
- rate constant /
- adsorption coefficient
-
表 1 H2比例與樣品雜質元素含量(質量分數)
Table 1. Partial pressure of H2 and the compositions of samples
${P_{{{\rm{H}}_2}}}$ Impurity element content /% O C S 4% 0.0664 0.0285 0.0011 24% 0.0275 0.0146 0.0008 表 2 Fe?M(M:C, Al, Si)樣品成分及速率常數計算結果
Table 2. Fe?M(M:C, Al, Si)sample composition and calculated results of the rate constant
Experiments Reaction area/
(10?4 m2)Sample element compositions/% Apparent rate constants/
(10?6mol·m?2·s·Pa)A O N C S Al or Si ka Fe?C alloys 1.94 0.039 0.021 0.006 0.0005 — 3.01 1.96 0.0694 0.0202 0.0354 0.0010 — 7.09 2.16 0.0006 0.0204 0.0360 0.0006 — 3.55 1.86 0.0286 0.0197 0.0545 0.0011 — 8.29 2.30 0.0017 0.0196 0.2300 0.0007 — 4.85 2.11 0.0361 0.0184 0.8000 0.0010 — 4.62 2.09 0.0024 0.0129 1.7800 0.0007 — 4.01 Fe?Al alloys 2.04 0.0115 0.0204 0.0433 0.0006 0.012 4.17 2.02 0.0009 0.0194 0.0270 0.0008 0.140 3.75 1.96 0.0006 0.0193 0.0202 0.0005 0.370 3.44 Fe?Si alloys 2.08 0.0133 0.0203 0.0460 0.0014 0.030 0.83 2.16 0.0086 0.0202 0.0204 0.0009 0.150 1.84 2.27 0.0057 0.0249 0.0288 0.0010 0.380 0.32 2.27 0.0038 0.0399 0.0175 0.0010 0.870 0.11 表 3 1873 K活度相互作用系數eij
Table 3. Activity interaction coefficient eij in liquid iron alloys at 1873 K
i j O S C N Al Si O ?0.2 ?0.133 ?0.45 0.057 ?3.9 ?0.131 S ?0.27 ?0.028 0.11 0.01 0.035 0.063 C ?0.34 0.046 0.14 0.11 0.043 0.08 N 0.05 0.007 0.13 0 ?0.028 0.047 Al ?6.6 0.03 0.091 ?0.058 0.045 0.0056 Si ?0.23 0.056 0.18 0.09 0.058 0.11 www.77susu.com -
參考文獻
[1] Hamada J, Inoue H. Effect of nitrogen on planar anisotropy of the r-value and texture in lean duplex stainless steel sheets. ISIJ Int, 2019, 59(5): 935 doi: 10.2355/isijinternational.ISIJINT-2018-633 [2] Ogawa K, Seki A. Modeling of effects of temperature and alloying elements on austenite phase growth rate in duplex stainless steel. ISIJ Int, 2019, 59(9): 1614 doi: 10.2355/isijinternational.ISIJINT-2018-869 [3] Gu J B, Liu H Q, Li J Y, et al. Effect of nitrogen on microstructure and secondary hardening of H21 die steel. J Iron Steel Res Int, 2019, 26(5): 483 doi: 10.1007/s42243-018-0164-6 [4] Xu H F, Wu G L, Li J, et al. Microstructure, hardness and contact fatigue properties of X30N high nitrogen stainless bearing steel. J Iron Steel Res Int, 2018, 25(9): 954 doi: 10.1007/s42243-018-0138-8 [5] Zhang B L, Chen G, Sun Y Q, et al. Effect of content on the hot deformation behaviour of 0Cr16Ni5Mo martensitic stainless steel. Chin J Eng, 2017, 39(10): 1525張寶麗, 陳剛, 孫永慶, 等. 氮含量對0Cr16Ni5Mo馬氏體不銹鋼高溫熱變形行為影響. 工程科學學報, 2017, 39(10):1525 [6] Zhang J, Liu J H, Yan B J, et al. Nonmetallic inclusion removal of Si-Mn deoxidized steel by nitrogen absorption and release method. Chin J Eng, 2018, 40(8): 937張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937 [7] Chen W, Liu Y L, Tian Y J, et al. Microstructure and properties of high nitrogen steel. Ordn Mater Sci Eng, 2010, 33(6): 65 doi: 10.3969/j.issn.1004-244X.2010.06.020陳巍, 劉燕林, 田雨江, 等. 高氮鋼材料組織及性能研究. 兵器材料科學與工程, 2010, 33(6):65 doi: 10.3969/j.issn.1004-244X.2010.06.020 [8] Jiang Z H, Zhu H C, Li H B, et al. Latest Progress in development and application of high nitrogen stainless steels // Proceedings of the 10th CSM Steel Congress & the 6th Baosteel Biennial Academic Conference Ⅱ. Shanghai, 2015: 1姜周華, 朱紅春, 李花兵, 等. 高氮不銹鋼開發和應用的最新進展 //第十屆中國鋼鐵年會暨第六屆寶鋼學術年會論文集Ⅱ. 上海, 2015: 1 [9] Zhan D P, Qiu G X, Niu B, et al. Thermodynamics and kinetics research of nitrogen dissolution in steel. Steelmaking, 2015, 31(5): 7戰東平, 邱國興, 牛奔, 等. 氮在鋼液中溶解的熱力學及動力學研究. 煉鋼, 2015, 31(5):7 [10] Pehlke R D, Elliott J F. Solubility of nitrogen in liquid iron alloys. Trans Met Soc AIME, 1960, 218: 1088 [11] Gomersall D W. Solubility of nitrogen in liquid iron alloys. Trans TMS-AIME, 1969, 242: 1309 [12] Byrne M, Belton G R. Studies of the interfacial kinetics of the reaction of nitrogen with liquid iron by the 15N-14N isotope exchange reaction. Metall Trans B, 1983, 14B: 441 [13] Glaws P C, Fruehan R J. The kinetics of the nitrogen reaction with liquid iron-sulfur alloys. Metall Trans B, 1985, 16B: 551 [14] Glaws P C, Fruehan R J. The kinetics of the nitrogen reaction with liquid iron-chromium alloys. Metall Trans B, 1986, 17: 317 doi: 10.1007/BF02655078 [15] Ono H, Morita K, Sano N. Effects of Ti, Zr, V, and Cr on the rate of nitrogen dissolution into molten iron. Metall Trans B, 1995, 26B: 991 [16] Ono H, Fukagawa H, Morita K, et al. Effects of O, Se, and Te on the rate of nitrogen dissolution in molten iron. Metall Trans B, 1996, 27B: 848 [17] Ono H, Iuchi K, Morita K, et al. Effects of oxygen and nitrogen on the rate of nitrogen dissolution in iron-chromium and iron-vanadium alloys. ISIJ Int, 2007, 36: 1245 [18] Han S M, Park J H, Jung S M, et al. Kinetic study on surface dissolution of nitrogen on liquid steel by isotope exchange technique. ISIJ Int, 2009, 49: 487 doi: 10.2355/isijinternational.49.487 [19] Morita K, Hirosumi T, Sano N. Effects of aluminium, silicon, and boron on the dissolution rate of nitrogen into molten iron. Metall Trans B, 2000, 31B: 889 [20] Harashima K, Mizoguchi S, Kajioka H, et al. Kinetics of nitrogen desorption from liquid iron with low nitrogen content under reduced pressures. Tetsu to Hagane, 1987, 73: 1559 doi: 10.2355/tetsutohagane1955.73.11_1559 [21] Eom C H, Song M H, Min D J. Interfacial kinetics of nitrogen dissolution in molten Fe?Mn?C alloys using 15N-14N isotope exchange reaction. ISIJ Int, 2015, 55: 2694 doi: 10.2355/isijinternational.ISIJINT-2015-321 [22] Lee J, Morita K. Interfacial kinetics of nitrogen with molten iron containing sulfur. ISIJ Int, 2003, 43: 14 doi: 10.2355/isijinternational.43.14 [23] Zhang Y Z, Hu X J, Ping D P, et al. Study on solving action of nitrogen in melting Fe?C alloy. Hebei Metall, 2017, 253(1): 15張亞召, 胡曉軍, 平東平, 等. Fe?C合金熔體中氮的溶解行為研究. 河北冶金, 2017, 253(1):15 [24] Ping D P, Hu X J, Zhang Y Z, et al. 14N-15N isotope exchange technique and its application in metallurgical kinetic study. J Anhui Polytechnic Univ, 2018, 33(2): 34 doi: 10.3969/j.issn.2095-0977.2018.02.007平東平, 胡曉軍, 張亞召, 等. 14N-15N同位素交換技術及其在冶金動力學研究中的應用. 安徽工程大學學報, 2018, 33(2):34 doi: 10.3969/j.issn.2095-0977.2018.02.007 [25] Kobayashi A, Tsukihashi F, Sano N. Kinetic Studies on the dissolution of nitrogen into molten iron by 14N-15N isotope exchange reaction. ISIJ Int., 1993, 33: 1131 doi: 10.2355/isijinternational.33.1131 [26] Zhang J Y. Metallurgical Physical Chemistry, Beijing: Metallurgical Industry Press, 2006張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2006 -