<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

碳鋁硅在鐵液中對氮溶解速率的影響

范越文 胡曉軍 王鵬棟 李遠

范越文, 胡曉軍, 王鵬棟, 李遠. 碳鋁硅在鐵液中對氮溶解速率的影響[J]. 工程科學學報, 2020, 42(S): 34-38. doi: 10.13374/j.issn2095-9389.2020.03.15.s18
引用本文: 范越文, 胡曉軍, 王鵬棟, 李遠. 碳鋁硅在鐵液中對氮溶解速率的影響[J]. 工程科學學報, 2020, 42(S): 34-38. doi: 10.13374/j.issn2095-9389.2020.03.15.s18
FAN Yue-wen, HU Xiao-jun, WANG Peng-dong, LI Yuan. Effects of carbon, aluminum and silicon on the dissolution rate of nitrogen into molten iron[J]. Chinese Journal of Engineering, 2020, 42(S): 34-38. doi: 10.13374/j.issn2095-9389.2020.03.15.s18
Citation: FAN Yue-wen, HU Xiao-jun, WANG Peng-dong, LI Yuan. Effects of carbon, aluminum and silicon on the dissolution rate of nitrogen into molten iron[J]. Chinese Journal of Engineering, 2020, 42(S): 34-38. doi: 10.13374/j.issn2095-9389.2020.03.15.s18

碳鋁硅在鐵液中對氮溶解速率的影響

doi: 10.13374/j.issn2095-9389.2020.03.15.s18
基金項目: 國家自然科學基金資助項目(51474019)
詳細信息
    通訊作者:

    E-mail:huxiaojun@ustb.edu.cn

  • 中圖分類號: TF701.2

Effects of carbon, aluminum and silicon on the dissolution rate of nitrogen into molten iron

More Information
  • 摘要: 通過15N-14N同位素氣體交換技術消除液相傳質的影響,利用在線質譜分析儀測定了在1873 K下,鐵液中氮溶解的界面反應速率常數。結果表明,總流量為600~800 mL?min?1時可以忽略氣相傳質的影響,保護氣中增加H2的比例有利于降低鋼液中雜質元素的濃度。鐵液中加入一定量碳、鋁、硅,分析得到這三種元素對氮溶解速率是抑制的。依據本實驗的數據利用空位解離模型建立反應速率常數ka與氧、硫、碳、鋁、硅的活度關系,吸附系數分別是KO=0.96,KS=9.32,KC=0.02,KAl=0.51,KSi=1.16。純鐵液中氮的溶解反應表觀速率常數為ka=4.8×10?6 mol?m?2?s?Pa。

     

  • 圖  1  實驗裝置

    Figure  1.  Experimental apparatus

    圖  2  速率常數與總流量關系圖

    Figure  2.  Rate constants as a function of flow rate

    圖  3  表觀速率常數與C、Al、Si含量關系圖

    Figure  3.  Apparent rate constants as a function of C, Al or Si content

    表  1  H2比例與樣品雜質元素含量(質量分數)

    Table  1.   Partial pressure of H2 and the compositions of samples

    ${P_{{{\rm{H}}_2}}}$Impurity element content /%
    OCS
    4%0.06640.02850.0011
    24%0.02750.01460.0008
    下載: 導出CSV

    表  2  Fe?M(M:C, Al, Si)樣品成分及速率常數計算結果

    Table  2.   Fe?M(M:C, Al, Si)sample composition and calculated results of the rate constant

    ExperimentsReaction area/
    (10?4 m2)
    Sample element compositions/% Apparent rate constants/
    (10?6mol·m?2·s·Pa)
    A ONCSAl or Si ka
    Fe?C alloys1.94 0.0390.0210.0060.0005 3.01
    1.96 0.06940.02020.03540.0010 7.09
    2.160.00060.02040.03600.00063.55
    1.860.02860.01970.05450.00118.29
    2.300.00170.01960.23000.00074.85
    2.110.03610.01840.80000.00104.62
    2.090.00240.01291.78000.00074.01
    Fe?Al alloys2.040.01150.02040.04330.00060.0124.17
    2.020.00090.01940.02700.00080.1403.75
    1.960.00060.01930.02020.00050.3703.44
    Fe?Si alloys2.080.01330.02030.04600.00140.0300.83
    2.160.00860.02020.02040.00090.1501.84
    2.270.00570.02490.02880.00100.3800.32
    2.27 0.00380.03990.01750.00100.870 0.11
    下載: 導出CSV

    表  3  1873 K活度相互作用系數eij

    Table  3.   Activity interaction coefficient eij in liquid iron alloys at 1873 K

    ij
    OSCNAlSi
    O?0.2?0.133?0.450.057?3.9?0.131
    S?0.27?0.0280.110.010.0350.063
    C?0.340.0460.140.110.0430.08
    N0.050.0070.130?0.0280.047
    Al?6.60.030.091?0.0580.0450.0056
    Si?0.230.0560.180.090.0580.11
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hamada J, Inoue H. Effect of nitrogen on planar anisotropy of the r-value and texture in lean duplex stainless steel sheets. ISIJ Int, 2019, 59(5): 935 doi: 10.2355/isijinternational.ISIJINT-2018-633
    [2] Ogawa K, Seki A. Modeling of effects of temperature and alloying elements on austenite phase growth rate in duplex stainless steel. ISIJ Int, 2019, 59(9): 1614 doi: 10.2355/isijinternational.ISIJINT-2018-869
    [3] Gu J B, Liu H Q, Li J Y, et al. Effect of nitrogen on microstructure and secondary hardening of H21 die steel. J Iron Steel Res Int, 2019, 26(5): 483 doi: 10.1007/s42243-018-0164-6
    [4] Xu H F, Wu G L, Li J, et al. Microstructure, hardness and contact fatigue properties of X30N high nitrogen stainless bearing steel. J Iron Steel Res Int, 2018, 25(9): 954 doi: 10.1007/s42243-018-0138-8
    [5] Zhang B L, Chen G, Sun Y Q, et al. Effect of content on the hot deformation behaviour of 0Cr16Ni5Mo martensitic stainless steel. Chin J Eng, 2017, 39(10): 1525

    張寶麗, 陳剛, 孫永慶, 等. 氮含量對0Cr16Ni5Mo馬氏體不銹鋼高溫熱變形行為影響. 工程科學學報, 2017, 39(10):1525
    [6] Zhang J, Liu J H, Yan B J, et al. Nonmetallic inclusion removal of Si-Mn deoxidized steel by nitrogen absorption and release method. Chin J Eng, 2018, 40(8): 937

    張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937
    [7] Chen W, Liu Y L, Tian Y J, et al. Microstructure and properties of high nitrogen steel. Ordn Mater Sci Eng, 2010, 33(6): 65 doi: 10.3969/j.issn.1004-244X.2010.06.020

    陳巍, 劉燕林, 田雨江, 等. 高氮鋼材料組織及性能研究. 兵器材料科學與工程, 2010, 33(6):65 doi: 10.3969/j.issn.1004-244X.2010.06.020
    [8] Jiang Z H, Zhu H C, Li H B, et al. Latest Progress in development and application of high nitrogen stainless steels // Proceedings of the 10th CSM Steel Congress & the 6th Baosteel Biennial Academic Conference Ⅱ. Shanghai, 2015: 1

    姜周華, 朱紅春, 李花兵, 等. 高氮不銹鋼開發和應用的最新進展 //第十屆中國鋼鐵年會暨第六屆寶鋼學術年會論文集Ⅱ. 上海, 2015: 1
    [9] Zhan D P, Qiu G X, Niu B, et al. Thermodynamics and kinetics research of nitrogen dissolution in steel. Steelmaking, 2015, 31(5): 7

    戰東平, 邱國興, 牛奔, 等. 氮在鋼液中溶解的熱力學及動力學研究. 煉鋼, 2015, 31(5):7
    [10] Pehlke R D, Elliott J F. Solubility of nitrogen in liquid iron alloys. Trans Met Soc AIME, 1960, 218: 1088
    [11] Gomersall D W. Solubility of nitrogen in liquid iron alloys. Trans TMS-AIME, 1969, 242: 1309
    [12] Byrne M, Belton G R. Studies of the interfacial kinetics of the reaction of nitrogen with liquid iron by the 15N-14N isotope exchange reaction. Metall Trans B, 1983, 14B: 441
    [13] Glaws P C, Fruehan R J. The kinetics of the nitrogen reaction with liquid iron-sulfur alloys. Metall Trans B, 1985, 16B: 551
    [14] Glaws P C, Fruehan R J. The kinetics of the nitrogen reaction with liquid iron-chromium alloys. Metall Trans B, 1986, 17: 317 doi: 10.1007/BF02655078
    [15] Ono H, Morita K, Sano N. Effects of Ti, Zr, V, and Cr on the rate of nitrogen dissolution into molten iron. Metall Trans B, 1995, 26B: 991
    [16] Ono H, Fukagawa H, Morita K, et al. Effects of O, Se, and Te on the rate of nitrogen dissolution in molten iron. Metall Trans B, 1996, 27B: 848
    [17] Ono H, Iuchi K, Morita K, et al. Effects of oxygen and nitrogen on the rate of nitrogen dissolution in iron-chromium and iron-vanadium alloys. ISIJ Int, 2007, 36: 1245
    [18] Han S M, Park J H, Jung S M, et al. Kinetic study on surface dissolution of nitrogen on liquid steel by isotope exchange technique. ISIJ Int, 2009, 49: 487 doi: 10.2355/isijinternational.49.487
    [19] Morita K, Hirosumi T, Sano N. Effects of aluminium, silicon, and boron on the dissolution rate of nitrogen into molten iron. Metall Trans B, 2000, 31B: 889
    [20] Harashima K, Mizoguchi S, Kajioka H, et al. Kinetics of nitrogen desorption from liquid iron with low nitrogen content under reduced pressures. Tetsu to Hagane, 1987, 73: 1559 doi: 10.2355/tetsutohagane1955.73.11_1559
    [21] Eom C H, Song M H, Min D J. Interfacial kinetics of nitrogen dissolution in molten Fe?Mn?C alloys using 15N-14N isotope exchange reaction. ISIJ Int, 2015, 55: 2694 doi: 10.2355/isijinternational.ISIJINT-2015-321
    [22] Lee J, Morita K. Interfacial kinetics of nitrogen with molten iron containing sulfur. ISIJ Int, 2003, 43: 14 doi: 10.2355/isijinternational.43.14
    [23] Zhang Y Z, Hu X J, Ping D P, et al. Study on solving action of nitrogen in melting Fe?C alloy. Hebei Metall, 2017, 253(1): 15

    張亞召, 胡曉軍, 平東平, 等. Fe?C合金熔體中氮的溶解行為研究. 河北冶金, 2017, 253(1):15
    [24] Ping D P, Hu X J, Zhang Y Z, et al. 14N-15N isotope exchange technique and its application in metallurgical kinetic study. J Anhui Polytechnic Univ, 2018, 33(2): 34 doi: 10.3969/j.issn.2095-0977.2018.02.007

    平東平, 胡曉軍, 張亞召, 等. 14N-15N同位素交換技術及其在冶金動力學研究中的應用. 安徽工程大學學報, 2018, 33(2):34 doi: 10.3969/j.issn.2095-0977.2018.02.007
    [25] Kobayashi A, Tsukihashi F, Sano N. Kinetic Studies on the dissolution of nitrogen into molten iron by 14N-15N isotope exchange reaction. ISIJ Int., 1993, 33: 1131 doi: 10.2355/isijinternational.33.1131
    [26] Zhang J Y. Metallurgical Physical Chemistry, Beijing: Metallurgical Industry Press, 2006

    張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2006
  • 加載中
圖(3) / 表(3)
計量
  • 文章訪問數:  735
  • HTML全文瀏覽量:  595
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-15
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回