<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

拉瓦爾噴管結構模式對超音速射流流動特性的影響

劉福海 朱榮 董凱 魏光升 李易霖

劉福海, 朱榮, 董凱, 魏光升, 李易霖. 拉瓦爾噴管結構模式對超音速射流流動特性的影響[J]. 工程科學學報, 2020, 42(S): 54-59. doi: 10.13374/j.issn2095-9389.2020.03.15.s15
引用本文: 劉福海, 朱榮, 董凱, 魏光升, 李易霖. 拉瓦爾噴管結構模式對超音速射流流動特性的影響[J]. 工程科學學報, 2020, 42(S): 54-59. doi: 10.13374/j.issn2095-9389.2020.03.15.s15
LIU Fu-hai, ZHU Rong, DONG Kai, WEI Guang-sheng, LI Yi-lin. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field[J]. Chinese Journal of Engineering, 2020, 42(S): 54-59. doi: 10.13374/j.issn2095-9389.2020.03.15.s15
Citation: LIU Fu-hai, ZHU Rong, DONG Kai, WEI Guang-sheng, LI Yi-lin. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field[J]. Chinese Journal of Engineering, 2020, 42(S): 54-59. doi: 10.13374/j.issn2095-9389.2020.03.15.s15

拉瓦爾噴管結構模式對超音速射流流動特性的影響

doi: 10.13374/j.issn2095-9389.2020.03.15.s15
基金項目: 國家自然科學基金資助項目(51804028);中央高校基本科研業務資助項目(FRF-TP-17-007A1)
詳細信息
    通訊作者:

    E-mail:liufuhaisteel@126.com

  • 中圖分類號: TG142.71

Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field

More Information
  • 摘要: 首先對噴管內流動特性進行了研究,結果表明傳統拉瓦爾噴管在噴管內部易形成大量明顯的波系結構,抑制了超音速氧氣射流的初始沖擊效果,而利用特征線設計的曲線拉瓦爾噴管可有效解決該問題。其次,分析了不同供氧流量下,傳統拉瓦爾噴管及曲線拉瓦爾噴管在高溫條件下的射流馬赫數分布、動壓及射流卷吸特性。研究結果表明基于特征線法設計的曲線拉瓦爾噴管應用于轉爐氧槍噴頭時,可延長氧氣射流核心段長度,增大氧氣射流對熔池的攪拌能力,并提高氧氣在熔池內的傳質效果。

     

  • 圖  1  熱態噴吹試驗系統示意圖

    Figure  1.  Schematic of the experiment system

    圖  2  模型網格結構圖。(a)拉瓦爾噴管網格示意圖;(b)計算域網格示意圖

    Figure  2.  Schematic of the mesh distribution of the simulation model: (a) Laval nozzle; (b) computational domain

    圖  3  不同類型拉瓦爾噴管的結構圖。(a)錐形拉瓦爾噴管;(b)曲線拉瓦爾噴管

    Figure  3.  Structure of different Laval nozzles: (a) cone-type; (b) curve-line

    圖  4  錐形噴管與曲線噴管出口處徑向流場分布。(a)馬赫數分布;(b)靜壓分布

    Figure  4.  Mach number and static pressure distributions using various Laval nozzles at the nozzle exit: (a) Mach number profile; (b) static pressure profile

    圖  5  不同氧氣流量條件下,錐形噴管與曲線噴管射流在軸向方向上的馬赫數分布。(a)低流量,即氧氣流量=2950 m3·h?1;(b)設計流量,即氧氣流量=3450 m3·h?1;(c)大流量,即氧氣流量=3950 m3·h?1

    Figure  5.  Mach number distributions using various Laval nozzles at centerline with different oxygen flow rate: (a) oxygen flow rate = 2950 m3·h?1; (b) oxygen flow rate = 3450 m3·h?1; (c) oxygen flow rate = 3950 m3·h?1

    圖  6  不同氧氣流量條件下,錐形噴管與曲線噴管射流在軸向方向上的氧氣摩爾分數分布。(a)氧氣流量=2950 m3·h?1;(b)氧氣流量=3450 m3·h?1;(c)氧氣流量=3950 m3·h?1

    Figure  6.  Molar concentration of oxygen flow distribution using various Laval nozzles at centerline with different oxygen flow rates: (a) oxygen flow rate = 2950 m3·h?1; (b) oxygen flow rate = 3450 m3·h?1; (c) oxygen flow rate = 3950 m3·h?1

    表  1  模型邊界條件

    Table  1.   Simulation boundary conditions

    Inlet conditionOutlet condition
    Flow rate/(m3·h?1)Gas composition (mass fraction)Temperature/K Static pressure/PaGas composition(mass fraction)Temperature/K
    2950, 3450, and 3950O2: 100%298101325O2: 23%; N2: 77%1873
    下載: 導出CSV

    表  2  氣相物化參數

    Table  2.   Parameters of the gas flow

    GasDensityViscosity/
    (kg·m?1·s?1)
    Thermal conductivity/
    (W·m?1·K?1)
    AirIdeal gas1.7894×10?50.0242
    Oxygen gasIdeal gas1.919×10?50.0246
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Naito K I, Ogawa Y, Inomoto T, et al. Characteristics of jets from top-blown lance in converter. ISIJ Int, 2000, 40(1): 23 doi: 10.2355/isijinternational.40.23
    [2] Deo B, Boom R. Fundamentals of Steelmaking Metallurgy. London: Prentice-Hall, 1993
    [3] Zhou X B, Ersson M, Zhong L C, et al. Mathematical and physical simulation of a top blown converter. Steel Res Int, 2014, 85(2): 273 doi: 10.1002/srin.201300310
    [4] Liu F H, Sun D B, Zhu R, et al. Characteristics of flow field for supersonic oxygen multijets with various Laval nozzle structures. Metall Mater Trans B, 2019, 50(5): 2362 doi: 10.1007/s11663-019-01652-7
    [5] Doh Y, Chapelle P, Jardy A, et al. Toward a full simulation of the basic oxygen furnace: deformation of the bath free surface and coupled transfer processes associated with the post-combustion in the gas region. Metall Mater Trans B, 2013, 44(3): 653 doi: 10.1007/s11663-013-9817-9
    [6] Fen C, Zhu R, Han B C, et al. Effect of nozzle exit wear on the fluid flow characteristics of supersonic oxygen lance. Metall Mater Trans B, 2020, 51(1): 187 doi: 10.1007/s11663-019-01722-w
    [7] Liu F H, Zhu R, Dong K, et al. Effect of ambient and oxygen temperature on flow field characteristics of coherent jet. Metall Mater Trans B, 2016, 47(1): 228 doi: 10.1007/s11663-015-0497-5
    [8] Wang H, Zhu R, Lü M, et al. Numerical simulation of swirl-type lances in vanadium extraction process. J Univ Sci Technol Beijing, 2014, 36(1): 89

    王慧, 朱榮, 呂明, 等. 提釩用旋流氧槍噴頭的數值模擬. 北京科技大學學報, 2014, 36(1):89
    [9] Sambasivam R, Lenka S N, Durst F, et al. A new lance design BOF steelmaking. Metall Mater Trans B, 2007, 38(1): 45 doi: 10.1007/s11663-006-9004-3
    [10] Liu F H, Sun D B, Zhu R, et al. Effect of shrouding gas temperature on characteristics of a supersonic jet flow field with a shrouding laval nozzle structure. Metall Mater Trans B, 2018, 49(4): 2050 doi: 10.1007/s11663-018-1272-1
    [11] Odenthal H J, Bui P, Reifferscheid M, et al. Advanced design of burner/injector systems in electric arc furnaces (EAF) // The 4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking. Dusseldorf, 2011: 1
    [12] Wu X T, Zhu R, Wei G S, et al. Influence of the carrier gas species on CaO-gas mixed injection in the EAF steelmaking process. Metall Mater Trans B, 2019, 50(5): 2389 doi: 10.1007/s11663-019-01629-6
    [13] Huang G P, Liang D W. The numerical simulation of 3-D flows of a inlet using multi-block MUSCI algorithm. Acta Aerodynamica Sinica, 2000, 18(2): 194

    黃國平, 梁德旺. 塊結構的MUSCL算法求解三維進氣道流場. 空氣動力學報, 2000, 18(2):194
    [14] Papamoschou D, Roshko A. The compressible turbulent shear layer: an experimental study. J Fluid Mech, 1988, 197(6): 453
    [15] Launder B E, Spalding D B. Lectures in Mathematical Model of Turbulence. London: Academic Press, 1972
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數:  1431
  • HTML全文瀏覽量:  912
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-15
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回