Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting
-
摘要: 利用掃描電鏡分析了自耗電極和電渣重熔鋼中夾雜物的特征,結合熱力學計算,分析了氧硫復合夾雜物在電渣重熔過程中的轉變機理。結果表明,電渣重熔采用氣氛保護結合脫氧操作可以將自耗電極全氧質量分數由0.0017%降低至0.0008%。電渣重熔之后鋼中小于3 μm夾雜物的比例顯著增加。自耗電極中的夾雜物為CaS與含質量分數3%和11%左右MgO的CaO–Al2O3–SiO2–MgO結合的兩類復合夾雜物。電渣過程未被去除的氧化物夾雜中的SiO2被鋼液中酸溶鋁還原,保留至電渣錠中。電渣錠中含約1%MgO和2%SiO2且成分均勻的CaO–Al2O3–SiO2–MgO是在電渣過程中新生的夾雜物。自耗電極中的CaS通過分解為鋼液中溶解Ca和S,以及通過與液態氧化物夾雜中Al2O3反應的途徑在電渣過程被去除。電渣錠中低熔點氧化物夾雜周圍環狀CaS是鋼液凝固過程中溶解S、酸溶鋁Al與氧化物夾雜中CaO的反應產物,高熔點氧化物夾雜周圍環狀CaS是鋼液凝固過程中Ca和S偏析后反應新生的夾雜物。復合夾雜物中補丁狀CaS是在電渣重熔鋼液冷卻過程中由復合夾雜物熔體中析出的。Abstract: The inclusions in the consumable steel electrode and electroslag remelted steel were characterized using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). The evolution mechanism of oxide–sulfide complex inclusions during electroslag remelting (ESR) was elucidated based on inclusion experimental identification and thermodynamic calculation. The results show that the combination of protective atmosphere and deoxidation operation during ESR lowers the total oxygen content from 0.0017% in the electrode to 0.0008% in the ingot. The number proportion of the inclusions smaller than 3 μm in the steel greatly increases after ESR. The inclusions in the steel electrode are two oxide–sulfide complex types of CaS+CaO–Al2O3–SiO2–MgO containing about 3% MgO and CaS+CaO–Al2O3–SiO2–MgO containing about 11% MgO. SiO2 in the original oxide inclusions that had not been removed in ESRR process was reduced by soluble aluminum in liquid steel, and the products remain in the ESR process until in remelted ingot. The CaO–Al2O3–SiO2–MgO inclusions with uniform elements distribution, which contain about 1%MgO and about 2%SiO2, in the ingot are newly formed oxide inclusions in the ESR. CaS inclusions in the steel electrode were removed during the ESR through dissociating into soluble calcium and sulfur in liquid steel, and in the way of reacting with Al2O3 in liquid oxide inclusions. The shell-type CaS around low-melting-temperature oxide inclusion generated as a result of the reaction between CaO in the oxide inclusion and dissolved aluminum and sulfur in liquid steel during solidification of liquid steel in the ESR process. The shell-type CaS around high-melting-temperature oxide inclusion is the reaction products of enriched soluble Ca and S during solidification of liquid steel. Patch-type CaS in the oxide–sulfide complex inclusion precipitated from the complex inclusion melt during the cooling of liquid steel in the ESR process.
-
Key words:
- non-metallic inclusion /
- sulfide /
- electroslag remelting /
- ultralow oxygen /
- sulfide capacity
-
表 1 自耗電極的化學成分(質量分數)
Table 1. Chemical composition of the consumable electrode and remelted ingot
% C Si Mn S Ni Cr V Mo Ca T.O Al Mg N 0.39 1.15 0.42 0.0022 0.16 5.67 0.97 1.47 0.0008 0.0017 0.0150 0.0003 0.0083 表 2 電渣錠的化學成分(質量分數)
Table 2. Chemical composition of the remelted ingot
% C Si Mn S Ni Cr V Mo Ca T.O Al Mg N 0.39 1.06 0.42 0.0016 0.16 5.67 0.97 1.47 0.0005 0.0008 0.0160 0.0002 0.0088 表 3 采用的一階活度相互作用系數數據[11, 21–22]
Table 3. First-order interaction parameters
$\mathop e\nolimits_i^j $ used in the present calculation$\mathop e\nolimits_i^j $ C Si Mn S Ni Cr V Ca O Al N Al 0.091 0.056 0.0035 0.035 –0.029 0.0096 — –0.047 –1.98 0.045 –0.058 Si 0.18 0.11 0.002 0.056 0.005 –0.0003 0.025 –0.067 –0.23 0.058 0.09 表 4 采用的一階活度相互作用系數
$e_i^j$ [20, 22, 29]Table 4. First-order interaction parameters
$e_i^j$ used in the present study[20, 22, 29]$\mathop e\nolimits_{\rm{i}}^j $ C Si Mn S Ni Cr V Mo Ca O Al Ca –0.34 –0.096 –0.0156 –140 –0.044 0.014 — — –0.002 –9000 –0.072 S 0.111 0.075 –0.026 –0.046 — –0.0105 –0.019 0.0027 –110 –0.27 0.041 Mg 0.15 –0.096 — — –0.012 0.022 — — — 560 –0.27 表 5 ξ的計算參數
Table 5. Parameters used for calculating ξ
Unary reaction ξi MgO 9573.07326 Al2O3 157705.276 SiO2 168872.847 CaO –3.3099425×104 Binary reaction ξmix Al2O3–CaO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {98282.7968 + 55.07340941T} \right]$ Al2O3–SiO2 ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {186850.468} \right]$ CaO–SiO2 ${y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {97271.7695 + 72.874T} \right]$ MgO–SiO2 ${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {69740.322 - 224.084556T} \right]$ Ternary reaction ξmix Al2O3–MgO–CaO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {4165955.5 - 1066.5663T - {\rm{3040801}}{\rm{.89}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$ Al2O3– SiO2–CaO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - 2035792.64 + {\rm{686}}{\rm{.044695}}T} \right]$ Al2O3–SiO2–MgO ${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot \left[ {{\rm{156192}}{\rm{.588}} - {\rm{290}}{\rm{.498555}}T{\rm{ + 949447}}{\rm{.247}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$ SiO2–MgO–CaO ${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - {\rm{1526497}}{\rm{.71 + 625}}{\rm{.662842}}T{\rm{ + 1485255}}{\rm{.98}}{y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}}} \right]$ www.77susu.com -
參考文獻
[1] Shi C B. Deoxidation of electroslag remelting (ESR) — a review. ISIJ Int, 2020, 60(6): 1083 doi: 10.2355/isijinternational.ISIJINT-2019-661 [2] Fu J, Zhu J. Change in the oxide inclusions during electroslag remelting. Acta Metall Sin, 1964, 7(3): 250傅杰, 朱覺. 電渣重熔過程中氧化物夾雜的變化. 金屬學報, 1964, 7(3):250 [3] Kay D A R, Pomfret R J. Removal of oxide inclusions during ac electroslag remelting. J Iron Steel Inst, 1971, 209(12): 962 [4] Mitchell A. Oxide inclusion behavior during consumable electrode remelting. Ironmaking Steelmaking, 1974, 1(3): 172 [5] Li Z B, Zhou W H, Li Y D. Mechanism of removal of non-metallic inclusions in the ESR process. Iron Steel, 1980, 15(1): 20李正邦, 周文輝, 李誼大. 電渣重熔去除夾雜的機理. 鋼鐵, 1980, 15(1):20 [6] Zhou D G, Chen X C, Fu J, et al. Inclusions in electroslag remelting and continuous casting bearing steels. J Univ Sci Technol Beijing, 2000, 22(1): 26 doi: 10.3321/j.issn:1001-053X.2000.01.008周德光, 陳希春, 傅杰, 等. 電渣重熔與連鑄軸承鋼中的夾雜物. 北京科技大學學報, 2000, 22(1):26 doi: 10.3321/j.issn:1001-053X.2000.01.008 [7] Medina S F, Cores A. Thermodynamic aspects in the manufacturing of microalloyed steels by the electroslag remelting process. ISIJ Int, 1993, 33(12): 1244 doi: 10.2355/isijinternational.33.1244 [8] Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans Iron Steel Inst Jpn, 1984, 24(7): 547 doi: 10.2355/isijinternational1966.24.547 [9] Dong Y W, Jiang Z H, Cao Y L, et al. Effect of slag on inclusions during electroslag remelting process of die steel. Metall Mater Trans B, 2014, 45(4): 1315 doi: 10.1007/s11663-014-0070-7 [10] Schneider R S E, Molnar M, Gelder S, et al. Effect of the slag composition and a protective atmosphere on chemical reactions and non-metallic inclusions during electro-slag remelting of a hot-work tool steel. Steel Res Int, 2018, 89(10): 1800161 doi: 10.1002/srin.201800161 [11] Shi C B, Wang H, Li J. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting. Metall Mater Trans B, 2018, 49(4): 1675 doi: 10.1007/s11663-018-1296-6 [12] Shi C B, Yu W T, Wang H, et al. Simultaneous modification of alumina and MgO·Al2O3 inclusions by calcium treatment during electroslag remelting of stainless tool steel. Metall Mater Trans B, 2017, 48(1): 146 doi: 10.1007/s11663-016-0771-1 [13] Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel. Steel Res Int, 2012, 83(5): 472 doi: 10.1002/srin.201100200 [14] Shi C B, Chen X C, Guo H J, et al. Control of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44(2): 378 doi: 10.1007/s11663-012-9780-x [15] Shi C B, Zheng D L, Guo B S, et al. Evolution of oxide–sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel. Metall Mater Trans B, 2018, 49(6): 3390 doi: 10.1007/s11663-018-1398-1 [16] Shi C B, Zhang J X, Zheng X, et al. Review on desulfurization of electroslag remelting (ESR). Int J Miner Metall Mater, 2020 doi: 10.1007/s12613-020-2075-3 [17] Liu Y, Zhang Z, Li G Q, et al. Evolution of desulfurization and characterization of inclusions in dual alloy ingot processed by electroslag remelting. Steel Res Int, 2017, 88(11): 1700058 doi: 10.1002/srin.201700058 [18] Li S J, Cheng G G, Miao Z Q, et al. Evolution of oxide Inclusions in G20CrNi2Mo carburized bearing steel during industrial electroslag remelting. ISIJ Int, 2018, 58(10): 1781 doi: 10.2355/isijinternational.ISIJINT-2018-072 [19] Chang L Z, Shi X F, Cong J Q. Study on mechanism of oxygen increase and countermeasure to control oxygen content during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(3): 182 doi: 10.1179/1743281213Y.0000000114 [20] Ohta H, Suito H. Activities in CaO–SiO2–Al2O3 slags and deoxidation equilibria of Si and Al. Metall Mater Trans B, 1996, 27(6): 943 doi: 10.1007/s11663-996-0008-9 [21] Park J H, Lee S B, Kim D S, et al. Thermodynamics of titanium oxide in CaO–SiO2–Al2O3–MgOsatd–CaF2 slag equilibrated with Fe–11mass%Cr melt. ISIJ Int, 2009, 49(3): 337 doi: 10.2355/isijinternational.49.337 [22] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333 [23] Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultraclean steels. ISIJ Int, 1996, 36(5): 528 doi: 10.2355/isijinternational.36.528 [24] Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys. Met Sci, 1974, 8(1): 298 doi: 10.1179/msc.1974.8.1.298 [25] Wei J H, Mitchell A. Changes in composition during A.C. ESR – I. theoretical development. Acta Metall Sin, 1984, 20(5): 261魏季和, Mitchell A. 交流電渣重熔過程中的成分變化 I. 理論傳質模型. 金屬學報, 1984, 20(5):261 [26] Shi C B. Behaviour and Control Technique of Oxygen and Inclusions during Protective Gas Electroslag Remelting Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2012史成斌. 氣體保護電渣重熔過程中氧和夾雜物的行為與控制研究[學位論文]. 北京: 北京科技大學, 2012 [27] Fraser M E, Mitchell A. Mass transfer in the electroslag process Pt. 1. Mass-transfer model. Ironmaking Steelmaking, 1976, 3(5): 279 [28] Mitchell A, Szekely J, Elliott J F. Electroslag Refining. London: The Iron and Steel Institute, 1973 [29] Ohta H, Suito H. Calcium and magnesium deoxidation in Fe–Ni and Fe–Cr alloys equilibrated with CaO–Al2O3 and CaO–Al2O3–MgO slags. ISIJ Int, 2003, 43(9): 1293 doi: 10.2355/isijinternational.43.1293 [30] Fukaya H, Miki T. Phase equilibrium between CaO·Al2O3 saturated molten CaO–Al2O3–MnO and (Ca, Mn)S solid solution. ISIJ Int, 2011, 51(12): 2007 doi: 10.2355/isijinternational.51.2007 [31] Nzotta M M, Du S C, Seetharaman S. Sulphide capacities in some multi component slag systems. ISIJ Int, 1998, 38(11): 1170 doi: 10.2355/isijinternational.38.1170 -