<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

氣氛保護電渣重熔過程中氧化物–CaS復合夾雜物的演變

劉偉建 史成斌 徐昊馳 鄭頂立 呂士剛 李晶 郭寶善

劉偉建, 史成斌, 徐昊馳, 鄭頂立, 呂士剛, 李晶, 郭寶善. 氣氛保護電渣重熔過程中氧化物–CaS復合夾雜物的演變[J]. 工程科學學報, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08
引用本文: 劉偉建, 史成斌, 徐昊馳, 鄭頂立, 呂士剛, 李晶, 郭寶善. 氣氛保護電渣重熔過程中氧化物–CaS復合夾雜物的演變[J]. 工程科學學報, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08
LIU Wei-jian, SHI Cheng-bin, XU Hao-chi, ZHENG Ding-li, Lü Shi-gang, LI Jing, GUO Bao-shan. Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting[J]. Chinese Journal of Engineering, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08
Citation: LIU Wei-jian, SHI Cheng-bin, XU Hao-chi, ZHENG Ding-li, Lü Shi-gang, LI Jing, GUO Bao-shan. Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting[J]. Chinese Journal of Engineering, 2020, 42(S): 109-118. doi: 10.13374/j.issn2095-9389.2020.03.12.s08

氣氛保護電渣重熔過程中氧化物–CaS復合夾雜物的演變

doi: 10.13374/j.issn2095-9389.2020.03.12.s08
基金項目: 國家自然科學基金資助項目(51874026,52074027)
詳細信息
    通訊作者:

    E-mail: chengbin.shi@ustb.edu.cn

  • 中圖分類號: TF769.2

Evolution of oxide–CaS complex inclusions during protective atmosphere electroslag remelting

More Information
  • 摘要: 利用掃描電鏡分析了自耗電極和電渣重熔鋼中夾雜物的特征,結合熱力學計算,分析了氧硫復合夾雜物在電渣重熔過程中的轉變機理。結果表明,電渣重熔采用氣氛保護結合脫氧操作可以將自耗電極全氧質量分數由0.0017%降低至0.0008%。電渣重熔之后鋼中小于3 μm夾雜物的比例顯著增加。自耗電極中的夾雜物為CaS與含質量分數3%和11%左右MgO的CaO–Al2O3–SiO2–MgO結合的兩類復合夾雜物。電渣過程未被去除的氧化物夾雜中的SiO2被鋼液中酸溶鋁還原,保留至電渣錠中。電渣錠中含約1%MgO和2%SiO2且成分均勻的CaO–Al2O3–SiO2–MgO是在電渣過程中新生的夾雜物。自耗電極中的CaS通過分解為鋼液中溶解Ca和S,以及通過與液態氧化物夾雜中Al2O3反應的途徑在電渣過程被去除。電渣錠中低熔點氧化物夾雜周圍環狀CaS是鋼液凝固過程中溶解S、酸溶鋁Al與氧化物夾雜中CaO的反應產物,高熔點氧化物夾雜周圍環狀CaS是鋼液凝固過程中Ca和S偏析后反應新生的夾雜物。復合夾雜物中補丁狀CaS是在電渣重熔鋼液冷卻過程中由復合夾雜物熔體中析出的。

     

  • 圖  1  自耗電極和電渣錠中夾雜物的尺寸分布

    Figure  1.  Size distribution of inclusions in the consumable steel and remelted steel

    圖  2  自耗電極中典型夾雜物的元素面分布(a,b,c)和EDS譜圖(d,e)(圖(d)和(e)中的EDS譜圖分別對應圖(a)和(c)中夾雜物的EDS點分析)

    Figure  2.  Element mappings (a,b,c) and EDS spectra (d,e) of complex inclusions in the consumable steel electrode (EDS spectra in (d) and (e) correspond to the inclusions shown in (a) and (c), respectively).

    圖  3  自耗電極中氧化物夾雜在CaO–Al2O3–SiO2三元相圖中的成分分布。(a)3%MgO;(b)11%MgO

    Figure  3.  Composition distribution of oxide inclusions in steel electrode on the CaO–Al2O3–SiO2 phase diagram: (a) 3%MgO; (b) 11%MgO

    圖  4  電渣錠中典型夾雜物的元素面分布(a,b,c,d)和EDS譜圖(e,f)(圖(e)和(f)中的EDS譜圖分別對應圖(a)和(d)中夾雜物的EDS點分析)

    Figure  4.  Element mappings (a,b,c,d) and EDS spectra (e,f) of complex inclusions in the remelted ingot (EDS spectra in (e) and (f) correspond to the inclusions shown in (a) and (d), respectively)

    圖  5  電渣錠中氧化物夾雜在CaO–Al2O3–SiO2三元相圖中的成分分布。(a)3%MgO;(b)11%MgO

    Figure  5.  Composition distribution of oxide inclusions in the remelted ingot on the CaO–Al2O3–SiO2 phase diagram: (a) 3%MgO; (b) 11%MgO

    圖  6  氧化物夾雜中SiO2與酸溶鋁[Al]s反應的吉布斯自由能變化值隨溫度的變化

    Figure  6.  Gibbs free energy change for the reaction between SiO2 in the oxide inclusion and dissolved aluminum in liquid steel against the temperature

    圖  7  氧化物夾雜中MgO與酸溶鋁[Al]s反應的吉布斯自由能變化值隨溫度的變化

    Figure  7.  Gibbs free energy change for the reaction between MgO in the oxide inclusion and dissolved aluminum in liquid steel against the temperature

    圖  8  CaO–Al2O3–SiO2–MgO夾雜物的硫化物容量隨溫度的變化

    Figure  8.  Dependence of the sulfide capacity of CaO–Al2O3–SiO2–MgO inclusion on temperature

    表  1  自耗電極的化學成分(質量分數)

    Table  1.   Chemical composition of the consumable electrode and remelted ingot %

    CSiMnSNiCrVMoCaT.OAlMgN
    0.391.150.420.00220.165.670.971.470.00080.00170.01500.00030.0083
    下載: 導出CSV

    表  2  電渣錠的化學成分(質量分數)

    Table  2.   Chemical composition of the remelted ingot %

    CSiMnSNiCrVMoCaT.OAlMgN
    0.391.060.420.00160.165.670.971.470.00050.00080.01600.00020.0088
    下載: 導出CSV

    表  3  采用的一階活度相互作用系數數據[11, 2122]

    Table  3.   First-order interaction parameters $\mathop e\nolimits_i^j $ used in the present calculation

    $\mathop e\nolimits_i^j $CSiMnSNiCrVCaOAlN
    Al0.0910.0560.00350.035–0.0290.0096–0.047–1.980.045–0.058
    Si0.180.110.0020.0560.005–0.00030.025–0.067–0.230.0580.09
    下載: 導出CSV

    表  4  采用的一階活度相互作用系數$e_i^j$[20, 22, 29]

    Table  4.   First-order interaction parameters $e_i^j$ used in the present study[20, 22, 29]

    $\mathop e\nolimits_{\rm{i}}^j $CSiMnSNiCrVMoCaOAl
    Ca–0.34–0.096–0.0156–140–0.0440.014–0.002–9000–0.072
    S0.1110.075–0.026–0.046–0.0105–0.0190.0027–110–0.270.041
    Mg0.15–0.096–0.0120.022560–0.27
    下載: 導出CSV

    表  5  ξ的計算參數

    Table  5.   Parameters used for calculating ξ

    Unary reactionξi
    MgO9573.07326
    Al2O3157705.276
    SiO2168872.847
    CaO–3.3099425×104
    Binary reactionξmix
    Al2O3–CaO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {98282.7968 + 55.07340941T} \right]$
    Al2O3–SiO2${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {186850.468} \right]$
    CaO–SiO2${y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {97271.7695 + 72.874T} \right]$
    MgO–SiO2${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot \left[ {69740.322 - 224.084556T} \right]$
    Ternary reactionξmix
    Al2O3–MgO–CaO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ {4165955.5 - 1066.5663T - {\rm{3040801}}{\rm{.89}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$
    Al2O3– SiO2–CaO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - 2035792.64 + {\rm{686}}{\rm{.044695}}T} \right]$
    Al2O3–SiO2–MgO${y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot \left[ {{\rm{156192}}{\rm{.588}} - {\rm{290}}{\rm{.498555}}T{\rm{ + 949447}}{\rm{.247}}{y_{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}} \right]$
    SiO2–MgO–CaO${y_{{\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}}} \cdot {y_{{\rm{S}}{{\rm{i}}^{{\rm{4 + }}}}}} \cdot {y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} \cdot \left[ { - {\rm{1526497}}{\rm{.71 + 625}}{\rm{.662842}}T{\rm{ + 1485255}}{\rm{.98}}{y_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}}} \right]$
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Shi C B. Deoxidation of electroslag remelting (ESR) — a review. ISIJ Int, 2020, 60(6): 1083 doi: 10.2355/isijinternational.ISIJINT-2019-661
    [2] Fu J, Zhu J. Change in the oxide inclusions during electroslag remelting. Acta Metall Sin, 1964, 7(3): 250

    傅杰, 朱覺. 電渣重熔過程中氧化物夾雜的變化. 金屬學報, 1964, 7(3):250
    [3] Kay D A R, Pomfret R J. Removal of oxide inclusions during ac electroslag remelting. J Iron Steel Inst, 1971, 209(12): 962
    [4] Mitchell A. Oxide inclusion behavior during consumable electrode remelting. Ironmaking Steelmaking, 1974, 1(3): 172
    [5] Li Z B, Zhou W H, Li Y D. Mechanism of removal of non-metallic inclusions in the ESR process. Iron Steel, 1980, 15(1): 20

    李正邦, 周文輝, 李誼大. 電渣重熔去除夾雜的機理. 鋼鐵, 1980, 15(1):20
    [6] Zhou D G, Chen X C, Fu J, et al. Inclusions in electroslag remelting and continuous casting bearing steels. J Univ Sci Technol Beijing, 2000, 22(1): 26 doi: 10.3321/j.issn:1001-053X.2000.01.008

    周德光, 陳希春, 傅杰, 等. 電渣重熔與連鑄軸承鋼中的夾雜物. 北京科技大學學報, 2000, 22(1):26 doi: 10.3321/j.issn:1001-053X.2000.01.008
    [7] Medina S F, Cores A. Thermodynamic aspects in the manufacturing of microalloyed steels by the electroslag remelting process. ISIJ Int, 1993, 33(12): 1244 doi: 10.2355/isijinternational.33.1244
    [8] Mitchell A, Reyes-Carmona F, Samuelsson E. The deoxidation of low-alloy steel ingots during ESR. Trans Iron Steel Inst Jpn, 1984, 24(7): 547 doi: 10.2355/isijinternational1966.24.547
    [9] Dong Y W, Jiang Z H, Cao Y L, et al. Effect of slag on inclusions during electroslag remelting process of die steel. Metall Mater Trans B, 2014, 45(4): 1315 doi: 10.1007/s11663-014-0070-7
    [10] Schneider R S E, Molnar M, Gelder S, et al. Effect of the slag composition and a protective atmosphere on chemical reactions and non-metallic inclusions during electro-slag remelting of a hot-work tool steel. Steel Res Int, 2018, 89(10): 1800161 doi: 10.1002/srin.201800161
    [11] Shi C B, Wang H, Li J. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting. Metall Mater Trans B, 2018, 49(4): 1675 doi: 10.1007/s11663-018-1296-6
    [12] Shi C B, Yu W T, Wang H, et al. Simultaneous modification of alumina and MgO·Al2O3 inclusions by calcium treatment during electroslag remelting of stainless tool steel. Metall Mater Trans B, 2017, 48(1): 146 doi: 10.1007/s11663-016-0771-1
    [13] Shi C B, Chen X C, Guo H J, et al. Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel. Steel Res Int, 2012, 83(5): 472 doi: 10.1002/srin.201100200
    [14] Shi C B, Chen X C, Guo H J, et al. Control of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting of die steel. Metall Mater Trans B, 2013, 44(2): 378 doi: 10.1007/s11663-012-9780-x
    [15] Shi C B, Zheng D L, Guo B S, et al. Evolution of oxide–sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel. Metall Mater Trans B, 2018, 49(6): 3390 doi: 10.1007/s11663-018-1398-1
    [16] Shi C B, Zhang J X, Zheng X, et al. Review on desulfurization of electroslag remelting (ESR). Int J Miner Metall Mater, 2020 doi: 10.1007/s12613-020-2075-3
    [17] Liu Y, Zhang Z, Li G Q, et al. Evolution of desulfurization and characterization of inclusions in dual alloy ingot processed by electroslag remelting. Steel Res Int, 2017, 88(11): 1700058 doi: 10.1002/srin.201700058
    [18] Li S J, Cheng G G, Miao Z Q, et al. Evolution of oxide Inclusions in G20CrNi2Mo carburized bearing steel during industrial electroslag remelting. ISIJ Int, 2018, 58(10): 1781 doi: 10.2355/isijinternational.ISIJINT-2018-072
    [19] Chang L Z, Shi X F, Cong J Q. Study on mechanism of oxygen increase and countermeasure to control oxygen content during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(3): 182 doi: 10.1179/1743281213Y.0000000114
    [20] Ohta H, Suito H. Activities in CaO–SiO2–Al2O3 slags and deoxidation equilibria of Si and Al. Metall Mater Trans B, 1996, 27(6): 943 doi: 10.1007/s11663-996-0008-9
    [21] Park J H, Lee S B, Kim D S, et al. Thermodynamics of titanium oxide in CaO–SiO2–Al2O3–MgOsatd–CaF2 slag equilibrated with Fe–11mass%Cr melt. ISIJ Int, 2009, 49(3): 337 doi: 10.2355/isijinternational.49.337
    [22] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
    [23] Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultraclean steels. ISIJ Int, 1996, 36(5): 528 doi: 10.2355/isijinternational.36.528
    [24] Sigworth G K, Elliott J F. The thermodynamics of liquid dilute iron alloys. Met Sci, 1974, 8(1): 298 doi: 10.1179/msc.1974.8.1.298
    [25] Wei J H, Mitchell A. Changes in composition during A.C. ESR – I. theoretical development. Acta Metall Sin, 1984, 20(5): 261

    魏季和, Mitchell A. 交流電渣重熔過程中的成分變化 I. 理論傳質模型. 金屬學報, 1984, 20(5):261
    [26] Shi C B. Behaviour and Control Technique of Oxygen and Inclusions during Protective Gas Electroslag Remelting Process[Dissertation]. Beijing: University of Science and Technology Beijing, 2012

    史成斌. 氣體保護電渣重熔過程中氧和夾雜物的行為與控制研究[學位論文]. 北京: 北京科技大學, 2012
    [27] Fraser M E, Mitchell A. Mass transfer in the electroslag process Pt. 1. Mass-transfer model. Ironmaking Steelmaking, 1976, 3(5): 279
    [28] Mitchell A, Szekely J, Elliott J F. Electroslag Refining. London: The Iron and Steel Institute, 1973
    [29] Ohta H, Suito H. Calcium and magnesium deoxidation in Fe–Ni and Fe–Cr alloys equilibrated with CaO–Al2O3 and CaO–Al2O3–MgO slags. ISIJ Int, 2003, 43(9): 1293 doi: 10.2355/isijinternational.43.1293
    [30] Fukaya H, Miki T. Phase equilibrium between CaO·Al2O3 saturated molten CaO–Al2O3–MnO and (Ca, Mn)S solid solution. ISIJ Int, 2011, 51(12): 2007 doi: 10.2355/isijinternational.51.2007
    [31] Nzotta M M, Du S C, Seetharaman S. Sulphide capacities in some multi component slag systems. ISIJ Int, 1998, 38(11): 1170 doi: 10.2355/isijinternational.38.1170
  • 加載中
圖(8) / 表(5)
計量
  • 文章訪問數:  1155
  • HTML全文瀏覽量:  780
  • PDF下載量:  26
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-12
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回