<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Incoloy825合金電渣重熔低氟渣系設計的熱力學研究

巨建濤 楊康帥 棘廣恒 安家良 劉詩薇

巨建濤, 楊康帥, 棘廣恒, 安家良, 劉詩薇. Incoloy825合金電渣重熔低氟渣系設計的熱力學研究[J]. 工程科學學報, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01
引用本文: 巨建濤, 楊康帥, 棘廣恒, 安家良, 劉詩薇. Incoloy825合金電渣重熔低氟渣系設計的熱力學研究[J]. 工程科學學報, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01
JU Jian-tao, YANG Kang-shuai, JI Guang-heng, AN Jia-liang, LIU Shi-wei. Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy[J]. Chinese Journal of Engineering, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01
Citation: JU Jian-tao, YANG Kang-shuai, JI Guang-heng, AN Jia-liang, LIU Shi-wei. Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy[J]. Chinese Journal of Engineering, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01

Incoloy825合金電渣重熔低氟渣系設計的熱力學研究

doi: 10.13374/j.issn2095-9389.2020.03.07.s01
基金項目: 國家自然科學基金資助項目(51774225,51704223)
詳細信息
    通訊作者:

    E-mail:ju_jiantao@163.com

  • 中圖分類號: TF141

Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy

More Information
  • 摘要: 為控制Incoloy825合金中的Al、Ti含量,并減少電渣過程中氟化物的揮發。借助FactSage熱力學軟件,建立渣?金反應的熱力學模型。設計出適宜控制Al、Ti含量的低氟渣系,探究了渣中組元與Al2O3和TiO2活度比的關系,并通過高溫渣–金平衡實驗進行驗證。結果表明:當渣中CaO和Al2O3含量增加,導致$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$值升高,即合金中Ti含量降低,Al含量升高;與此相反,渣中TiO2含量升高,使$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$值降低,即Ti含量增加,Al含量減少;渣中CaF2和MgO含量的增加對$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$的影響較小。合金中Al、Ti含量相差較大時,合金中Ti元素易氧化;Al、Ti含量相差較小時,Al元素易氧化。渣中CaO的質量分數為30%~33%、Al2O3的質量分數為30%~33%、TiO2的質量分數為6%~12%、CaF2的質量分數為20%~30%、MgO的質量分數為1%~5%時,能夠有效控制合金中Al、Ti元素含量。

     

  • 圖  1  渣中組元與$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$的關系。(a) CaO;(b)Al2O3;(c)TiO2;(d)MgO;(e)CaF2

    Figure  1.  Relationship between component in slag and$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$: (a) CaO; (b) Al2O3; (c) TiO2; (d) MgO; (e) CaF2

    圖  2  不同初始Al含量下渣中組元對合金中平衡Ti含量的關系。(a)CaO;(b)Al2O3;(c)TiO2;(d)MgO;(e)CaF2

    Figure  2.  Relationship between the components in the slag and the equilibrium Ti content in the alloy under different initial Al contents: (a) CaO; (b) Al2O3; (c) TiO2; (d) MgO; (e) CaF2

    圖  3  不同初始Ti含量下渣中組元與合金中平衡Al含量的關系。(a)CaO;(b)Al2O3;(c)TiO2;(d)MgO;(e)CaF2

    Figure  3.  Relationship between equilibrium Al content in components and alloys in slag under different initial Ti contents: (a) CaO; (b) Al2O3; (c) TiO2; (d) MgO; (e) CaF2

    圖  4  合金中Al、Ti含量變化。(a)w(TiO2)=6%;(b)w(TiO2)=10%;(c)w(TiO2)=12%

    Figure  4.  Changes of Al and Ti contents in alloy: (a) w(TiO2)=6%; (b) w(TiO2)=10%; (c) w(TiO2)=12%

    表  1  Incoloy825合金中組元的活度相互作用系數[23-24]

    Table  1.   Activity interaction coefficient of the alloying elements in Incoloy825 alloy

    $e_i^j$MnCrNiAlTiCuMo
    Al0.0340.045?0.03760.040
    Ti?0.120.025?0.01660.0480.0140.016
    下載: 導出CSV

    表  2  Incoloy825合金成分(質量分數)

    Table  2.   Chemical composition of the Incoloy825 alloy %

    CMnSiPSCrMoNiCuAlTiFe
    ≤0.025≤1.0≤0.519.5?23.52.5?3.538?461.5?3.0≤0.20.6?1.2bal
    0.0100.1070.1310.0090.00920.6203.18038.8801.6600.1201.000bal.
    下載: 導出CSV

    表  3  渣–金反應前后渣成分

    Table  3.   Composition of slag before and after slag-metal reaction %

    SlagBefore reaction After reaction
    CaF2CaOAl2O3MgOTiO2 CaF2CaOAl2O3MgOTiO2
    S125.033.033.03.06.0 19.637.231.44.27.6
    S225.031.031.03.010.0 19.836.330.24.19.5
    S325.030.030.03.012.0 20.135.529.44.210.8
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50(9): 41

    李星, 耿鑫, 姜周華, 等. 電渣重熔高溫合金渣系對冶金質量的影響. 鋼鐵, 2015, 50(9):41
    [2] Duan S C, Guo H J, Shi X, et al. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process. Chin J Eng, 2018, 40(Suppl 1): 53

    段生朝, 郭漢杰, 石驍, 等. Inconel 718高溫合金電渣重熔熱力學分析. 工程科學學報, 2018, 40(增刊1): 53
    [3] Hou D, Jiang Z H, Dong Y W, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 doi: 10.1080/03019233.2015.1110920
    [4] Hou D, Jiang Z H, Qu T P, et al. Aluminum, titanium and oxygen control during electroslag remelting of stainless steel based on thermodynamic analysis. J Iron Steel Res Int, 2019, 26(1): 20 doi: 10.1007/s42243-018-0107-2
    [5] Hou D, Dong Y W, Jiang Z H, et al. Deoxidation thermodynamics and slag designing in ESR process for aluminum-titannium alloy. J Northeast Univ Nat Sci, 2015, 36(11): 1591

    侯棟, 董艷伍, 姜周華, 等. 含鋁鈦合金電渣重熔中的渣系設計及脫氧熱力學. 東北大學學報:自然科學版, 2015, 36(11):1591
    [6] Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8: 5232 doi: 10.1038/s41598-018-23556-3
    [7] Sun N, Wen C, Liu Z L, et al. Effect of Al, Ti contents on the microstructure and corrosion resistance of as-forged Incoloy825 alloy. Rare Met Mater Eng, 2018, 47(3): 860

    孫楠, 溫宸, 劉子利, 等. Al、Ti含量對鍛態Incoloy825合金組織和耐腐蝕性能的影響. 稀有金屬材料與工程, 2018, 47(3):860
    [8] Chen C X, Wang Y, Fu J, et al. A study on the titanium loss during electroslag remelting high titanium and low aluminum content superally. Acta Metall Sinica, 1981, 17(1): 50

    陳崇禧, 王涌, 傅杰, 等. 高鈦低鋁高溫合金電渣重熔中鈦燒損的研究. 金屬學報, 1981, 17(1):50
    [9] Su S. Research on control of Ti content in electroslag remelting of R-26. J Iron Steel Res, 2011, 23(Suppl 2): 282

    粟碩. R-26合金電渣重熔Ti含量控制研究. 鋼鐵研究學報, 2011, 23(增刊2): 282
    [10] Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electroslag remelting (ESR) process. Metall Mater Trans B, 2017, 48(4): 2147 doi: 10.1007/s11663-017-0994-9
    [11] Wang H J, Xu P, Yang S. Effect of argon flow rate, slag series and adding aluminium on[Ti] of shielding atmosphere ESR ingot of steel 1Cr21Ni5Ti. Special Steel, 2015, 36(6): 23 doi: 10.3969/j.issn.1003-8620.2015.06.007

    王海江, 徐朋, 楊松. 氬氣流量、渣系和加Al粉對1Cr21Ni5Ti鋼保護氣氛重熔錠[Ti]的影響. 特殊鋼, 2015, 36(6):23 doi: 10.3969/j.issn.1003-8620.2015.06.007
    [12] Yin B, Li W M, Wu S P, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel 718 superalloy. Iron Steel, 2019, 54(5): 86

    尹彬, 李萬明, 吳少鵬, 等. Inconel718高溫合金電渣重熔鋁鈦元素燒損熱力學分析. 鋼鐵, 2019, 54(5):86
    [13] Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification. ISIJ Int, 2017, 57(4): 713 doi: 10.2355/isijinternational.ISIJINT-2016-655
    [14] Duan S C, Shi X, Wang F, et al. A review of methodology development for controlling loss of alloying elements during the electroslag remelting process. Metall Mater Trans B, 2019, 50(6): 3055 doi: 10.1007/s11663-019-01665-2
    [15] Hou D, Liu F B, Qu T P, et al. Behavior of alloying elements during drawing-ingot-type electroslag remelting of stainless steel containing titanium. ISIJ Int, 2018, 58(5): 876 doi: 10.2355/isijinternational.ISIJINT-2017-687
    [16] Jiang K Y, Qin W H, Wang C Y. Analysis on detection result of occupational hazards in workplaces of electroslag remelting workshop. Chin J Ind Med, 2018, 31(3): 220

    姜開友, 秦文華, 王超洋. 電渣重熔車間工作場所職業病危害因素檢測分析. 中國工業醫學雜志, 2018, 31(3):220
    [17] Ju J T, Lv Z L, Jiao Z Y, et al. Non-isothermal analysis on the evaporation behavior of CaF2?SiO2?CaO system slag. Chin J Process Eng, 2012, 12(4): 618

    巨建濤, 呂振林, 焦志遠, 等. CaF2?SiO2?CaO渣系的非等溫揮發行為. 過程工程學報, 2012, 12(4):618
    [18] Zhao J X, Chen Y M, Li X M, et al. Mechanism of slag composition change during electroslag remelting process. J Iron Steel Res Int, 2011, 18(10): 24 doi: 10.1016/S1006-706X(12)60017-X
    [19] Zhao J X, Lu L, Zhao Z Y, et al. Volatilization mechanism of ESR slag with high fluoride under high-temperature. Iron Steel, 2019, 54(6): 43

    趙俊學, 盧亮, 趙忠宇, 等. 電渣重熔用五元高氟渣高溫揮發機制. 鋼鐵, 2019, 54(6):43
    [20] Mao H X, Li Z B. A metallurgical study on low fluorine and fluorine-free slag for electroslag remelting. J Iron Steel Res, 1983, 3(4): 597

    茅洪祥, 李正邦. 低氟渣及無氟渣電渣重熔研究. 鋼鐵研究總院學報, 1983, 3(4):597
    [21] Shi C B, Shin S H, Zheng D L, et al. Development of low-fluoride slag for electroslag remelting: role of Li2O on the viscosity and structure of the slag. Metall Mater Trans B, 2016, 47(6): 3343 doi: 10.1007/s11663-016-0826-3
    [22] Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with Al2O3?CaO?CaF2 slags in the ESR Process. J Vac Sci Technol, 1972, 9(6): 1318 doi: 10.1116/1.1317029
    [23] Karasev A V, Suito H. Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni-M(M=Si, Ti, Al, Zr, and Ce) alloy. Metall Mater Trans B, 1999, 30(2): 259 doi: 10.1007/s11663-999-0055-0
    [24] Pak J J, Jeong Y S, Tae S J, et al. Thermodynamics of titanium and nitrogen in an Fe?Ni melt. Metall Mater Trans B, 2005, 36(4): 489 doi: 10.1007/s11663-005-0040-1
    [25] Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 doi: 10.1007/s11663-015-0530-8
    [26] Zheng D L, Li J, Shi C B, et al. Crystallization characteristics and in-mold performance of electroslag remelting-type TiO2-bearing slag. Metall Mater Trans B, 2019, 50(3): 1148 doi: 10.1007/s11663-019-01536-w
    [27] Shi C B, Zheng D L, Shin S H, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2017, 24(1): 18 doi: 10.1007/s12613-017-1374-9
    [28] Chen Y M, Zhao J X, Fan J, et al. A study on variations of slag ingredient during electroslag remelting process. Special Steel, 2010, 31(6): 7 doi: 10.3969/j.issn.1003-8620.2010.06.003

    陳艷梅, 趙俊學, 樊君, 等. 電渣重熔過程中渣成分變化的研究. 特殊鋼, 2010, 31(6):7 doi: 10.3969/j.issn.1003-8620.2010.06.003
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數:  1028
  • HTML全文瀏覽量:  657
  • PDF下載量:  36
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-07
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回