Effect of CaO on reducing atmosphere in the direct reduction and magnetic separation process of beach titanomagnetite concentrate
-
摘要: 以鐵品位為58.58%、TiO2品位為12.04%的海濱鈦磁鐵礦精礦為試樣,進行煤基直接還原–磁選試驗。從反應產生的CO和CO2氣體組成、總反應的氣化速率、CO分壓值、金屬化率、礦物組成等角度進行分析,查明了CaO在海濱鈦磁鐵礦精礦直接還原?磁選工藝中的作用機理。研究結果表明,CaO可以提高還原劑的氣化速率,促進鈦磁鐵礦的還原,增加CO2氣體的產生量,從而降低CO分壓值。同時發現CaO可以參與固固反應,降低含鈦礦物中的FeO含量,也有利于鈦、鐵組分的遷移和富集,促進金屬鐵顆粒的聚集長大。因此,添加CaO有利于通過磨礦?磁選促進鈦鐵分離與回收。Abstract: The exploitation of refractory iron ores has become increasingly important around the world because of the rapid depletion of easy-to-process iron ores. Ironsand is extensively distributed in the coastal areas of Indonesia, China, and New Zealand, and can provide an alternative to conventional iron ores. Although the composition of ironsand is partially dependent on its location and position, it approximates that of titanomagnetite (Fe3-xTixO4) containing ~ 60% total Fe (TFe). However, the conventional smelting route for smelting beach titanomagnetite concentrate with carbon uses a blast furnace to produce pig iron and titanium slag, which has many disadvantages. First, the smelting process requires lots of coke and a high temperature. Second, sinter blend allows for the addition of only a small amount of beach titanomagnetite concentrate to ensure the desired sintering characteristics. Therefore, in order to efficiently utilize beach titanomagnetite, the processes of direct reduction followed by magnetic separation are generally applied to recover iron. In addition, additives such as CaO, CaCO3, and NaCO3 are often used in the reduction roasting process. These additives may improve the reduction characteristics or facilitate the growth of iron particles to some extent. In order to study the effect of the additive CaO on the direct reduction and magnetic separation of beach titanomagnetite concentrate which contains 58.58% of TFe and 12.04% of TiO2, the mechanisms were investigated by gas composition of CO and CO2, gasification rate of total reaction, CO partial pressure, metallization rate, mineral composition and so on. The results indicate that adding CaO can improve the gasification rate of reductant and facilitate the reduction of titanomagnetite, which improves the generation of CO2 gas and decreases the CO partial pressure. Besides, CaO can participate in solid-solid reaction, reduce FeO content in Ti-containing mineral and facilitate the migration and enrichment of Ti and Fe components, which promote the growth of metallic iron particles. Thus, adding CaO is good for the separation and recovery of Fe and Ti by grinding and magnetic separation.
-
表 1 試樣的化學分析結果
Table 1. Chemical analysis of the sample
% Element Fe TiO2 SiO2 MgO CaO MnO Al2O3 S P Mass fraction 58.58 12.04 1.69 1.74 0.36 0.03 1.23 <0.01 0.02 www.77susu.com -
參考文獻
[1] Gao E X. Mechanism of Separating Iron and Titanium from Beach Titanomagnetite by Using Direct Reduction-Magnetic Separation[Dissertation]. Beijing: University of Science and Technology Beijing, 2016高恩霞. 海濱鈦磁鐵礦直接還原-磁選鈦鐵分離及機理研究[學位論文]. 北京: 北京科技大學, 2016 [2] Zhang Y P, Zhang J L, Wang Z Y, et al. Sintering characteristics of titanium sands after grinding and its influence mechanism on the quality of sinter. Chin J Eng, 2016, 38(4): 468張亞鵬, 張建良, 王振陽, 等. 細磨海砂礦燒結特性及其對燒結礦質量影響機理. 工程科學學報, 2016, 38(4):468 [3] Zhao Y Q, Sun T C, Zhao H Y, et al. Effect of MgO and CaCO3 as additives on the reduction roasting and magnetic separation of beach titanomagnetite concentrate. ISIJ Int, 2019, 59(6): 981 doi: 10.2355/isijinternational.ISIJINT-2018-757 [4] Wang Z, Pinson D, Chew S, et al. Interaction of New Zealand ironsand and flux materials. ISIJ Int, 2016, 56(8): 2015 [5] Gao E X, Sun T C, Liu Z G, et al. Effect of sodium sulfate on direct reduction of beach titanomagnetite for separation of iron and titanium. J Iron Steel Res Int, 2016, 23(5): 428 doi: 10.1016/S1006-706X(16)30068-1 [6] Hu T Y, Sun T C, Kou J, et al. Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust. Int J Miner Process, 2017, 165: 28 doi: 10.1016/j.minpro.2017.06.003 [7] Wei M, Li Y T, Wu D Y, et al. Study on the beach placer’s beneficiability of Sangihe lands in Indonesia. Conserv Util Miner Resour, 2009(2): 33 doi: 10.3969/j.issn.1001-0076.2009.02.009衛敏, 李英堂, 吳東印, 等. 印尼桑義赫島海濱砂礦可選性試驗研究. 礦產保護與利用, 2009(2):33 doi: 10.3969/j.issn.1001-0076.2009.02.009 [8] Xu M, Zhang Y, Fu W Z, et al. Experimental research on magnetic separation of Ilmenite Placer of Yun Nan. Conserv Util Miner Resour, 2011(5): 24 doi: 10.3969/j.issn.1000-6532.2011.05.006徐明, 張淵, 傅文章, 等. 云南鈦鐵礦砂礦磁選試驗研究. 礦產綜合利用, 2011(5):24 doi: 10.3969/j.issn.1000-6532.2011.05.006 [9] Hu T Y, Sun T C, Kou J, et al. Effect of blast furnace dust as a reductant on direct reduction roasting for separating titanium and iron in seaside titanomagnetite. Chin J Eng, 2016, 38(5): 609胡天洋, 孫體昌, 寇玨, 等. 高爐灰為還原劑對海濱鈦磁鐵礦直接還原焙燒磁選—鈦鐵分離的影響. 工程科學學報, 2016, 38(5):609 [10] Wang Z Y. Sequential Extraction of Titanium and Iron Resources from Ironsand[Dissertation]. Beijing: University of Science and Technology Beijing, 2018王振陽. 海砂礦鈦鐵資源分級利用研究[學位論文]. 北京: 北京科技大學, 2018 [11] Cruz-Sanchez E, Alvarez-Castro J F, Ramírez-Picado J A, et al. Study of titanomagnetite sands from Costa Rica. J Alloys Compd, 2004, 369(1-2): 265 doi: 10.1016/j.jallcom.2003.09.064 [12] Wu S H. Reasonable utilization ways of V-Ti bearing beach placer. Sinter Pelletiz, 2011, 36(2): 35吳舜華. 含釩鈦海濱砂礦的合理利用途徑. 燒結球團, 2011, 36(2):35 [13] Geng C. The Technology and Mechanism of Direct Reduction Magnetic Separation of Titanium and Iron by the Embedding Method for Seashores Titanomagnetite[Dissertation]. Beijing: University of Science and Technology Beijing, 2017耿超. 海濱鈦磁鐵礦包埋法直接還原—磁選鈦鐵分離工藝及機理[學位論文]. 北京: 北京科技大學, 2017 [14] Geng C, Sun T C, Yang H F, et al. Effect of Na2SO4 on the embedding direct reduction of beach titanomagnetite and the separation of titanium and iron by magnetic separation. ISIJ Int, 2015, 55(12): 2543 doi: 10.2355/isijinternational.ISIJINT-2015-420 [15] Geng C, Sun T C, Ma Y W, et al. Effects of embedding direct reduction followed by magnetic separation on recovering titanium and iron of beach titanomagnetite concentrate. J Iron Steel Res Int, 2017, 24(2): 156 doi: 10.1016/S1006-706X(17)30022-5 [16] Liu Y R, Zhang J L, Wang Z Y, et al. Experimental research on the deep reduction–magnetic separation of ironsand. Chin J Eng, 2016, 38(2): 181劉依然, 張建良, 王振陽, 等. 海砂礦深度還原–磁選分離實驗研究. 工程科學學報, 2016, 38(2):181 [17] Han J Q, Chen X, Zhang L, et al. Research on magnetic separation and smelting separation for reduction product of vanadium-titanium magnetite concentrate. Chin J Rare Met, http://kns.cnki.net/kcms/detail/11.2111.TF.20190910.1451.001.html韓吉慶, 陳曉, 張力, 等. 釩鈦磁鐵精礦還原產物的磁選與熔分研究. 稀有金屬, http://kns.cnki.net/kcms/detail/11.2111.TF.20190910.1451.001.html [18] Jung S M. Effects of CaO/CaCO3 on the carbothermic reduction of titanomagnetite ore. Metall Mater Trans B, 2015, 46(3): 1162 doi: 10.1007/s11663-015-0341-y [19] Ding S, Xue Q G, She X F, et al. Effect of CaCO3 on direct reduction–smelting separation of vanadium-bearing titanomagnetite concentrate. Iron Steel, 2014, 49(8): 15丁閃, 薛慶國, 佘雪峰, 等. 碳酸鈣對釩鈦磁鐵精礦直接還原–熔分的影響. 鋼鐵, 2014, 49(8):15 [20] Cao Y X, Wang H H, Ma J H, et al. Effect of additives on the preparation of reduced iron powder from iron concentrate. Chin J Process Eng, 2018, 18(1): 133 doi: 10.12034/j.issn.1009-606X.217190曹羽鑫, 王恒輝, 馬江華, 等. 添加劑對鐵精礦制備還原鐵粉的影響. 過程工程學報, 2018, 18(1):133 doi: 10.12034/j.issn.1009-606X.217190 [21] Sun H Y, Dong X J, She X F, et al. Solid state reduction of titanomagnetite concentrate by graphite. ISIJ Int, 2013, 53(4): 564 doi: 10.2355/isijinternational.53.564 [22] Su Z J, Zhang Y B, Liu B B, et al. Effect of CaCO3 on the gaseous reduction of tin oxide under CO-CO2 atmosphere. Miner Process Extract Metall Rev, 2016, 37(3): 179 doi: 10.1080/08827508.2016.1168414 [23] Fan D C. Research on Pre-concentration and Deep Reduction of Qidashan Iron Ore Tailings and the Comprehensive Utilization of Tailings[Dissertation]. Beijing: University of Science and Technology Beijing, 2018范敦城. 齊大山鐵尾礦預富集–深度還原提鐵及尾渣綜合利用研究[學位論文]. 北京: 北京科技大學, 2018 [24] Chen C, Sun T C, Kou J, et al. Carbothermic reduction of vanadium titanomagnetite concentrate with magnesium compounds. Chin J Rare Met, 2018, 42(7): 765陳超, 孫體昌, 寇玨, 等. 鎂化合物對釩鈦磁鐵礦精礦碳熱還原的影響研究. 稀有金屬, 2018, 42(7):765 [25] Hu T, Lv X W, Bai C G, et al. Reduction behavior of Panzhihua titanomagnetite concentrates with coal. Metall Mater Trans B, 2013, 44(2): 252 doi: 10.1007/s11663-012-9783-7 [26] Cha J W, Kim D Y, Jung S M. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall Mater Trans B, 2015, 46(5): 2165 doi: 10.1007/s11663-015-0399-6 -