<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

CaO對海濱鈦磁鐵礦精礦直接還原?磁選工藝中還原氣氛的影響

趙永強 孫體昌 李正要 徐承焱 吳世超

趙永強, 孫體昌, 李正要, 徐承焱, 吳世超. CaO對海濱鈦磁鐵礦精礦直接還原?磁選工藝中還原氣氛的影響[J]. 工程科學學報, 2020, 42(7): 838-845. doi: 10.13374/j.issn2095-9389.2019.12.25.006
引用本文: 趙永強, 孫體昌, 李正要, 徐承焱, 吳世超. CaO對海濱鈦磁鐵礦精礦直接還原?磁選工藝中還原氣氛的影響[J]. 工程科學學報, 2020, 42(7): 838-845. doi: 10.13374/j.issn2095-9389.2019.12.25.006
ZHAO Yong-qiang, SUN Ti-chang, LI Zheng-yao, XU Cheng-yan, WU Shi-chao. Effect of CaO on reducing atmosphere in the direct reduction and magnetic separation process of beach titanomagnetite concentrate[J]. Chinese Journal of Engineering, 2020, 42(7): 838-845. doi: 10.13374/j.issn2095-9389.2019.12.25.006
Citation: ZHAO Yong-qiang, SUN Ti-chang, LI Zheng-yao, XU Cheng-yan, WU Shi-chao. Effect of CaO on reducing atmosphere in the direct reduction and magnetic separation process of beach titanomagnetite concentrate[J]. Chinese Journal of Engineering, 2020, 42(7): 838-845. doi: 10.13374/j.issn2095-9389.2019.12.25.006

CaO對海濱鈦磁鐵礦精礦直接還原?磁選工藝中還原氣氛的影響

doi: 10.13374/j.issn2095-9389.2019.12.25.006
基金項目: 國家自然科學基金資助項目(51874017,51674018)
詳細信息
    作者簡介:

    趙永強 2267891373@qq.com

    通訊作者:

    E-mail:zyli0213@ustb.edu.cn

  • 中圖分類號: TD981

Effect of CaO on reducing atmosphere in the direct reduction and magnetic separation process of beach titanomagnetite concentrate

More Information
  • 摘要: 以鐵品位為58.58%、TiO2品位為12.04%的海濱鈦磁鐵礦精礦為試樣,進行煤基直接還原–磁選試驗。從反應產生的CO和CO2氣體組成、總反應的氣化速率、CO分壓值、金屬化率、礦物組成等角度進行分析,查明了CaO在海濱鈦磁鐵礦精礦直接還原?磁選工藝中的作用機理。研究結果表明,CaO可以提高還原劑的氣化速率,促進鈦磁鐵礦的還原,增加CO2氣體的產生量,從而降低CO分壓值。同時發現CaO可以參與固固反應,降低含鈦礦物中的FeO含量,也有利于鈦、鐵組分的遷移和富集,促進金屬鐵顆粒的聚集長大。因此,添加CaO有利于通過磨礦?磁選促進鈦鐵分離與回收。

     

  • 圖  1  試樣的XRD譜圖

    Figure  1.  XRD pattern of the sample

    圖  2  CO和CO2生成氣體的檢測系統示意圖

    Figure  2.  Schematic of the system for measuring generated gases of CO and CO2

    1—N2 gas cylinder; 2—valves; 3— mass flowmeter; 4—gas analyzer; 5—cooling water; 6—gas inlet; 7—alumina crucible with sample; 8—furnace; 9—filter; 10—scale; 11—thermocouple; 12—exhaust fan

    圖  3  磨礦?磁選試驗流程圖

    Figure  3.  Test flowchart of grinding–magnetic separation

    圖  4  添加不同質量分數的CaO對CO2和CO氣體組成的影響。(a)無添加劑;(b)CaO質量分數為2.2%;(c)CaO質量分數為4.4%

    Figure  4.  Effects of different mass fractions of CaO on the gas composition of CO2 and CO: (a)no addictive; (b) CaO mass fraction, 2.2%; (c) CaO mass fraction, 4.4%

    圖  5  添加不同質量分數的CaO對氣化速率和CO分壓值的影響。(a)總反應的氣化速率;(b)CO分壓值

    Figure  5.  Effects of different mass fractions of CaO on the gasification rate and CO pressure: (a) gasification rate of total reaction; (b) CO partial pressure values

    圖  6  添加不同質量分數的CaO對還原樣品的金屬化率影響

    Figure  6.  Effect of different mass fractions of CaO on the metallization rate of the reduced samples

    圖  7  添加不同質量分數的CaO時還原產物的XRD圖譜

    Figure  7.  XRD patterns of reduced sample with different mass fractions of CaO

    圖  8  添加不同質量分數的CaO時還原產物的掃描電鏡圖和EDS分析。(a)無添加劑;(b)CaO的質量分數為4.4%;(c)1點能譜;(d)2點能譜

    Figure  8.  Morphologies and energy spectra analysis of reduced sample with different mass fractions of CaO: (a) no addictive; (b) CaO mass fraction, 4.4%; (c) EDS spectrum of Point 1; (d) EDS spectrum of Point 2

    圖  9  添加不同質量分數的CaO對鐵顆粒平均粒度的影響

    Figure  9.  Effects of different mass fractions of CaO on the mean size of iron particles

    圖  10  添加不同質量分數的CaO對產品指標的影響。(a)還原鐵產品;(b)含鈦產品

    Figure  10.  Effects of different mass fractions of CaO on product index: (a) direct reduction iron products; (b) titaniferous products

    表  1  試樣的化學分析結果

    Table  1.   Chemical analysis of the sample %

    ElementFeTiO2SiO2MgOCaOMnOAl2O3SP
    Mass fraction58.5812.041.691.740.360.031.23<0.010.02
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Gao E X. Mechanism of Separating Iron and Titanium from Beach Titanomagnetite by Using Direct Reduction-Magnetic Separation[Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    高恩霞. 海濱鈦磁鐵礦直接還原-磁選鈦鐵分離及機理研究[學位論文]. 北京: 北京科技大學, 2016
    [2] Zhang Y P, Zhang J L, Wang Z Y, et al. Sintering characteristics of titanium sands after grinding and its influence mechanism on the quality of sinter. Chin J Eng, 2016, 38(4): 468

    張亞鵬, 張建良, 王振陽, 等. 細磨海砂礦燒結特性及其對燒結礦質量影響機理. 工程科學學報, 2016, 38(4):468
    [3] Zhao Y Q, Sun T C, Zhao H Y, et al. Effect of MgO and CaCO3 as additives on the reduction roasting and magnetic separation of beach titanomagnetite concentrate. ISIJ Int, 2019, 59(6): 981 doi: 10.2355/isijinternational.ISIJINT-2018-757
    [4] Wang Z, Pinson D, Chew S, et al. Interaction of New Zealand ironsand and flux materials. ISIJ Int, 2016, 56(8): 2015
    [5] Gao E X, Sun T C, Liu Z G, et al. Effect of sodium sulfate on direct reduction of beach titanomagnetite for separation of iron and titanium. J Iron Steel Res Int, 2016, 23(5): 428 doi: 10.1016/S1006-706X(16)30068-1
    [6] Hu T Y, Sun T C, Kou J, et al. Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust. Int J Miner Process, 2017, 165: 28 doi: 10.1016/j.minpro.2017.06.003
    [7] Wei M, Li Y T, Wu D Y, et al. Study on the beach placer’s beneficiability of Sangihe lands in Indonesia. Conserv Util Miner Resour, 2009(2): 33 doi: 10.3969/j.issn.1001-0076.2009.02.009

    衛敏, 李英堂, 吳東印, 等. 印尼桑義赫島海濱砂礦可選性試驗研究. 礦產保護與利用, 2009(2):33 doi: 10.3969/j.issn.1001-0076.2009.02.009
    [8] Xu M, Zhang Y, Fu W Z, et al. Experimental research on magnetic separation of Ilmenite Placer of Yun Nan. Conserv Util Miner Resour, 2011(5): 24 doi: 10.3969/j.issn.1000-6532.2011.05.006

    徐明, 張淵, 傅文章, 等. 云南鈦鐵礦砂礦磁選試驗研究. 礦產綜合利用, 2011(5):24 doi: 10.3969/j.issn.1000-6532.2011.05.006
    [9] Hu T Y, Sun T C, Kou J, et al. Effect of blast furnace dust as a reductant on direct reduction roasting for separating titanium and iron in seaside titanomagnetite. Chin J Eng, 2016, 38(5): 609

    胡天洋, 孫體昌, 寇玨, 等. 高爐灰為還原劑對海濱鈦磁鐵礦直接還原焙燒磁選—鈦鐵分離的影響. 工程科學學報, 2016, 38(5):609
    [10] Wang Z Y. Sequential Extraction of Titanium and Iron Resources from Ironsand[Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    王振陽. 海砂礦鈦鐵資源分級利用研究[學位論文]. 北京: 北京科技大學, 2018
    [11] Cruz-Sanchez E, Alvarez-Castro J F, Ramírez-Picado J A, et al. Study of titanomagnetite sands from Costa Rica. J Alloys Compd, 2004, 369(1-2): 265 doi: 10.1016/j.jallcom.2003.09.064
    [12] Wu S H. Reasonable utilization ways of V-Ti bearing beach placer. Sinter Pelletiz, 2011, 36(2): 35

    吳舜華. 含釩鈦海濱砂礦的合理利用途徑. 燒結球團, 2011, 36(2):35
    [13] Geng C. The Technology and Mechanism of Direct Reduction Magnetic Separation of Titanium and Iron by the Embedding Method for Seashores Titanomagnetite[Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    耿超. 海濱鈦磁鐵礦包埋法直接還原—磁選鈦鐵分離工藝及機理[學位論文]. 北京: 北京科技大學, 2017
    [14] Geng C, Sun T C, Yang H F, et al. Effect of Na2SO4 on the embedding direct reduction of beach titanomagnetite and the separation of titanium and iron by magnetic separation. ISIJ Int, 2015, 55(12): 2543 doi: 10.2355/isijinternational.ISIJINT-2015-420
    [15] Geng C, Sun T C, Ma Y W, et al. Effects of embedding direct reduction followed by magnetic separation on recovering titanium and iron of beach titanomagnetite concentrate. J Iron Steel Res Int, 2017, 24(2): 156 doi: 10.1016/S1006-706X(17)30022-5
    [16] Liu Y R, Zhang J L, Wang Z Y, et al. Experimental research on the deep reduction–magnetic separation of ironsand. Chin J Eng, 2016, 38(2): 181

    劉依然, 張建良, 王振陽, 等. 海砂礦深度還原–磁選分離實驗研究. 工程科學學報, 2016, 38(2):181
    [17] Han J Q, Chen X, Zhang L, et al. Research on magnetic separation and smelting separation for reduction product of vanadium-titanium magnetite concentrate. Chin J Rare Met, http://kns.cnki.net/kcms/detail/11.2111.TF.20190910.1451.001.html

    韓吉慶, 陳曉, 張力, 等. 釩鈦磁鐵精礦還原產物的磁選與熔分研究. 稀有金屬, http://kns.cnki.net/kcms/detail/11.2111.TF.20190910.1451.001.html
    [18] Jung S M. Effects of CaO/CaCO3 on the carbothermic reduction of titanomagnetite ore. Metall Mater Trans B, 2015, 46(3): 1162 doi: 10.1007/s11663-015-0341-y
    [19] Ding S, Xue Q G, She X F, et al. Effect of CaCO3 on direct reduction–smelting separation of vanadium-bearing titanomagnetite concentrate. Iron Steel, 2014, 49(8): 15

    丁閃, 薛慶國, 佘雪峰, 等. 碳酸鈣對釩鈦磁鐵精礦直接還原–熔分的影響. 鋼鐵, 2014, 49(8):15
    [20] Cao Y X, Wang H H, Ma J H, et al. Effect of additives on the preparation of reduced iron powder from iron concentrate. Chin J Process Eng, 2018, 18(1): 133 doi: 10.12034/j.issn.1009-606X.217190

    曹羽鑫, 王恒輝, 馬江華, 等. 添加劑對鐵精礦制備還原鐵粉的影響. 過程工程學報, 2018, 18(1):133 doi: 10.12034/j.issn.1009-606X.217190
    [21] Sun H Y, Dong X J, She X F, et al. Solid state reduction of titanomagnetite concentrate by graphite. ISIJ Int, 2013, 53(4): 564 doi: 10.2355/isijinternational.53.564
    [22] Su Z J, Zhang Y B, Liu B B, et al. Effect of CaCO3 on the gaseous reduction of tin oxide under CO-CO2 atmosphere. Miner Process Extract Metall Rev, 2016, 37(3): 179 doi: 10.1080/08827508.2016.1168414
    [23] Fan D C. Research on Pre-concentration and Deep Reduction of Qidashan Iron Ore Tailings and the Comprehensive Utilization of Tailings[Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    范敦城. 齊大山鐵尾礦預富集–深度還原提鐵及尾渣綜合利用研究[學位論文]. 北京: 北京科技大學, 2018
    [24] Chen C, Sun T C, Kou J, et al. Carbothermic reduction of vanadium titanomagnetite concentrate with magnesium compounds. Chin J Rare Met, 2018, 42(7): 765

    陳超, 孫體昌, 寇玨, 等. 鎂化合物對釩鈦磁鐵礦精礦碳熱還原的影響研究. 稀有金屬, 2018, 42(7):765
    [25] Hu T, Lv X W, Bai C G, et al. Reduction behavior of Panzhihua titanomagnetite concentrates with coal. Metall Mater Trans B, 2013, 44(2): 252 doi: 10.1007/s11663-012-9783-7
    [26] Cha J W, Kim D Y, Jung S M. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall Mater Trans B, 2015, 46(5): 2165 doi: 10.1007/s11663-015-0399-6
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  3215
  • HTML全文瀏覽量:  873
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-25
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回