Current status and development trend of UAV remote sensing applications in the mining industry
-
摘要: 無人機遙感技術是融合無人機、遙感傳感器、差分定位、通信等技術以實現地理環境信息快速采集處理與應用分析的新興技術。本文介紹了無人機遙感平臺構成、技術現狀及工作流程,并通過大量國內外文獻調研系統梳理其在礦業領域應用場景與實際案例,結合當前技術供給短板分析發展態勢。研究表明:(1)無人機遙感技術具備成本低廉、機動性強、數據采集靈活、時效性強、可重復、高分辨率等無可比擬的優勢;(2)當前礦業領域主要應用于露天礦生產管理、尾礦庫安全監測、災害應急救援、礦區環境監測、邊坡災害防治;(3)規范監管、簡化操控方式、提升續航時間、改善成果精度、拓展應用場景是技術應用發展趨勢。無人機遙感技術在礦業領域具備廣闊應用前景,勢必成為智慧礦山建設中不可缺少的重要組成部分。Abstract: Unmanned aerial vehicle (UAV) remote sensing is a state-of-the-art technology that integrates UAV, remote sensing sensor, GPS differential positioning, communication, and other technologies to achieve rapid collection, processing, and analysis of geographic environmental information. UAV remote sensing is considered an important supplement of spaceborne remote sensing and is recently being widely used in the topographical surveying and mapping, precision agriculture, heritage inspection, and emergency rescue, etc. For the traditional mining industry, high-quality and real-time UAV remote sensing data can be obtained at reasonable costs and benefit the mining operations, particularly for numerous small- and medium-scale mining sites where equipments and professional expertise are expensive. However, application scenarios of UAV remote sensing in the mining industry are rarely reported and lack systematic review. Therefore, the definition, platform composition, current status, and general workflow of UAV remote sensing technology were summarized in this study. Then, through significant domestic and foreign literature surveys, the application scenarios and practical case studies of UAV remote sensing in the mining industry were systematically presented. Finally, the development trend was analyzed on the basis of the shortcomings of current technology. Results show that (1) UAV remote sensing technology has the advantages of low costs, strong maneuverability, flexible data sampling settings, timeliness, repeatability, and high resolution. (2) The current applications of UAV remote sensing in the mining industry mainly include the operations management of open-pit mines, safety monitoring of tailing ponds, emergency rescue, environmental monitoring of mining areas, and prevention and control of slope disasters. (3) The development trend of UAV remote sensing technology application will include the standardization of UAV supervision, simplification of UAV control mode, augmentation of UAV endurance time, improvement of the quality of results, and further expansion of application scenarios. UAV remote sensing technology has broad application prospects in the mining industry and is bound to become an indispensable part of smart mines.
-
Key words:
- unmanned aerial vehicle /
- remote sensing /
- photogrammetry /
- mining industry /
- smart mine
-
表 1 常見消費級無人機參數
Table 1. Specifications of common consumer-grade UAV drones
Type Product Mass/ kg Wingspan/diagonal size/cm Battery capacity/
(mA·h)Surveying sensor Maximum flight endurance/min Maximum speed/ (km·h?1) Maximum transmission distance/km Fixed-wing UAV Feima F300 3.75 180 ― 42-MP Sony RX1RII camera/oblique module/thermal infrared module 90 ― 10 SenseFly eBee Classic 0.69 96 2150 20-MP S.O.D.A. camera/Sequoia + multispectral sensor/thermal sensor 50 90.0 3.0 TrimbleUX5 2.50 100 6000 24-MP Sony a5100 camera 50 80.0 5.0 PrioriaMaveric 1.16 74.9 ― Digital camera/thermal infrared camera 45–60 101.0 15.0 WingtraWingtraOne 3.70 125 6800 42-MP Sony RX1RII camera/multispectral sensor/thermal infrared sensor 55 57.6 8.0 Multi-rotor UAV DJI Phantom 4 Pro/Feima D1000 1.39 35 5870 20-MP 1"CMOS 28 72.0 7.0 DJIInspire 2 3.44 60.5 4280 24-MP Zenmuse X7 23 94.0 7.0 YuneecTyphoon
H Plus1.70 52 5400 20-MP 1"CMOS 25 72.0 1.6 ParrotANAFI 0.32 ― 2700 21-MP 1/2.4" CMOS 25 55.0 4.0 www.77susu.com -
參考文獻
[1] Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm Eng Remote Sens, 2015, 81(4): 281 doi: 10.14358/PERS.81.4.281 [2] Li D R. Development prospect of photogrammetry and remote sensing. Geomat Inform Sci Wuhan Univ, 2008, 33(12): 1211李德仁. 攝影測量與遙感學的發展展望. 武漢大學學報: 信息科學版, 2008, 33(12):1211 [3] Li D R, Li M. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomat Inform Sci Wuhan Univ, 2014, 39(5): 505李德仁, 李明. 無人機遙感系統的研究進展與應用前景. 武漢大學學報: 信息科學版, 2014, 39(5):505 [4] Roosevelt C H. Mapping site-level microtopography with real-time kinematic global navigation satellite systems (RTK GNSS) and unmanned aerial vehicle photogrammetry (UAVP). Open Archaeol, 2014, 1: 29 [5] Yan D, Zhou N E. The applications and prospects of CH UAV systems. Comput Eng Software, 2018, 39(9): 117閆東, 周乃恩. 彩虹無人機系列應用及展望. 軟件, 2018, 39(9):117 [6] Giordan D, Hayakawa Y, Nex F, et al. The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat Hazards Earth Syst Sci, 2018, 18(4): 1079 doi: 10.5194/nhess-18-1079-2018 [7] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens, 2014, 92: 79 doi: 10.1016/j.isprsjprs.2014.02.013 [8] Li Q. Application of Low-Altitude UAV Remote Sensing in Mine Monitoring [Dissertation]. Beijing: China University of Geosciences (Beijing), 2013李遷. 低空無人機遙感在礦山監測中的應用研究——以贛州稀土礦區為例[學位論文]. 北京: 中國地質大學(北京), 2013 [9] Xiang J, Chen J P, Sofia G, et al. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ Earth Sci, 2018, 77(6): 220 doi: 10.1007/s12665-018-7383-9 [10] Chen J P, Li K, Chang K J, et al. Open-pit mining geomorphic feature characterisation. Int J Appl Earth Observ Geoinform, 2015, 42: 76 doi: 10.1016/j.jag.2015.05.001 [11] Zhang Y X, Lan P T, Jin Y C, et al. Practice and exploration of unmanned aerial vehicle three-dimensional oblique photogrammetry technology in the monitoring of open pit mines. Bull Surv Mapp, 2017(Suppl): 114張玉俠, 蘭鵬濤, 金元春, 等. 無人機三維傾斜攝影技術在露天礦山監測中的實踐與探索. 測繪通報, 2017(增刊): 114 [12] Xu Z H, Wu L X, Chen S J, et al. Method of engineering volume monitoring and calculation for open-pit mine from UAV images. J Northeast Univ Nat Sci, 2016, 37(1): 84許志華, 吳立新, 陳紹杰, 等. 基于無人機影像的露天礦工程量監測分析方法. 東北大學學報: 自然科學版, 2016, 37(1):84 [13] Esposito G, Mastrorocco G, Salvini R, et al. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ Earth Sci, 2017, 76(3): 103 doi: 10.1007/s12665-017-6409-z [14] Yang Q S, Fan B B, Wei X L, et al. Research on the application of unmanned aerial vehicle technology in Xinjiang mineral monitoring. Bull Surv Mapp, 2015(5): 91楊青山, 范彬彬, 魏顯龍, 等. 無人機攝影測量技術在新疆礦山儲量動態監測中的應用. 測繪通報, 2015(5):91 [15] Raeva P L, Filipova S L, Filipov D G. Volume computation of a stockpile—A study case comparing GPS and UAV measurements in an open pit quarry. Int Arch Photogram Remote Sens Spatial Inform Sci, 2016, XLI-B1: 999 doi: 10.5194/isprsarchives-XLI-B1-999-2016 [16] Tong X H, Liu X F, Chen P, et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of Open-Pit Mine Areas. Remote Sens, 2015, 7(6): 6635 doi: 10.3390/rs70606635 [17] Cui Z Q. The application of the high precision airborne geophysical survey to the investigation of important metallogenic belts. Geophys Geochem Explor, 2018, 42(1): 38崔志強. 高精度航空物探在重要成礦帶資源調查中的應用. 物探與化探, 2018, 42(1):38 [18] Li F, Ding Z Q, Cui Z Q, et al. Application demonstration of the CH-3 UAV-borne magnetic survey system in different terrain areas of Xinjiang. Geol Explor, 2018, 54(4): 735李飛, 丁志強, 崔志強, 等. CH-3無人機航磁測量系統在我國新疆不同地形區的應用示范. 地質與勘探, 2018, 54(4):735 [19] Wang K, Yang P, Hudson-Edwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526王昆, 楊鵬, Hudson-Edwards Karen, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526 [20] Rico M, Benito G, Salgueiro A R, et al. Reported tailings dam failures: a review of the European incidents in the worldwide context. J Hazard Mater, 2008, 152(2): 846 doi: 10.1016/j.jhazmat.2007.07.050 [21] WISE Uranium Project. Chronology of major tailings dam failures (from 1960) [EB/OL]. (2019-10-02) [2019-11-20]. https://www.wise-uranium.org/mdaf.html [22] Rauhala A, Tuomela A, Davids C, et al. UAV remote sensing surveillance of a mine tailings impoundment in sub-arctic conditions. Remote Sens, 2017, 9(12): 1318 doi: 10.3390/rs9121318 [23] Wang K. Research on Slurry Routing SPH Simulation and Hazards Prevention of Tailings Dam Failure [Dissertation]. Beijing: University of Science and Technology Beijing, 2019王昆. 尾礦庫潰壩演進SPH模擬與災害防控研究[學位論文]. 北京: 北京科技大學, 2019 [24] Fundão Tailings Dam Review Panel. Report on the Immediate Causes of the Failure of the Fundão Dam [EB/OL]. (2016-08-25) [2017-10-01]. [25] Jia H J, Wang L J, Jin X, et al. Three-dimensional spatial data acquisition and risk analysis of tailings pond based on UAV aerial survey. J Saf Sci Technol, 2018, 14(7): 115賈虎軍, 王立娟, 靳曉, 等. 基于無人機航測的尾礦庫三維空間數據獲取與風險分析. 中國安全生產科學技術, 2018, 14(7):115 [26] Ma G C, Wang L J, Ma S, et al. Application of UAV photogrammetry in construction planning of mine tailings reservoir. Sci Surv Mapp, 2018, 43(1): 84馬國超, 王立娟, 馬松, 等. 無人機攝影測量在礦山尾礦庫建設規劃的應用. 測繪科學, 2018, 43(1):84 [27] Chiabrando F, Sammartano G, Spanò A. A comparison among different optimization levels in 3D multi-sensor models. A test case in emergency context: 2016 Italian earthquake. Int Arch Photogram Remote Sens Spatial Inform Sci, 2017, 42-2(W3): 155 [28] Mavroulis S, Andreadakis E, Spyrou N I, et al. UAV and GIS based rapid earthquake-induced building damage assessment and methodology for EMS-98 isoseismal map drawing: The June 12, 2017 Mw 6.3 Lesvos (Northeastern Aegean, Greece) earthquake. Int J Disast Risk Reduct, 2019, 37: 101169 doi: 10.1016/j.ijdrr.2019.101169 [29] Yamazaki F, Matsuda T, Denda S, et al. Construction of 3D models of buildings damaged by earthquakes using UAV aerial images // Proceedings of the Tenth Pacific Conference Earthquake Engineering Building an Earthquake-Resilient Pacific. Sydney, 2015: 204 [30] Yang Y, Du G L, Cao Q T, Application of UAV aerial surveying technology in geological disaster emergency mapping. Bull Surv Mapp, 2017(Suppl): 119楊燕, 杜甘霖, 曹起銅. 無人機航測技術在地質災害應急測繪中的研究與應用——以9.28麗水山體滑坡應急測繪為例. 測繪通報, 2017(增刊): 119 [31] Zang K, Sun Y H, Li J, et al. Application of miniature unmanned aerial vehicle remote sensing system to Wenchuan earthquake. J Nat Disast, 2010, 19(3): 162臧克, 孫永華, 李京, 等. 微型無人機遙感系統在汶川地震中的應用. 自然災害學報, 2010, 19(3):162 [32] Huang R J, Shen F Q, Zhou X X, et al. The key technology of disaster geographic information acquisition in UAV cluster and major applications. Bull Surv Mapp, 2019(6): 96黃瑞金, 沈富強, 周興霞, 等. 無人機集群災情地理信息獲取關鍵技術及重大應用. 測繪通報, 2019(6):96 [33] Li M L, Yang W J, Yi X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue. J Mech Eng, 2019, 55(11): 1 doi: 10.3901/JME.2019.11.001李明龍, 楊文婧, 易曉東, 等. 面向災難搜索救援場景的空地協同無人群體任務規劃研究. 機械工程學報, 2019, 55(11):1 doi: 10.3901/JME.2019.11.001 [34] Boccardo P, Chiabrando F, Dutto F, et al. UAV deployment exercise for mapping purposes: evaluation of emergency response applications. Sensors, 2015, 15(7): 15717 doi: 10.3390/s150715717 [35] Yang H J, Li Y, Zhu H T, et al. UAV remote sensing’s application in the environmental protection field. Chin High Technol Lett, 2015, 25(6): 607楊海軍, 李營, 朱海濤, 等. 無人機遙感技術在環境保護領域的應用. 高技術通訊, 2015, 25(6):607 [36] Gao G J, Hou E K, Xie X S, et al. The monitoring of ground surface subsidence related to coal seams mining in Yangchangwan coal mine by means of unmanned aerial vehicle with quad-rotors. Geol Bull China, 2018, 37(12): 2264高冠杰, 侯恩科, 謝曉深, 等. 基于四旋翼無人機的寧夏羊場灣煤礦采煤沉陷量監測. 地質通報, 2018, 37(12):2264 [37] Hou E K, Shou Z G, Xu Y N, et al. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence. Coal Geol Explor, 2017, 45(6): 102侯恩科, 首召貴, 徐友寧, 等. 無人機遙感技術在采煤地面塌陷監測中的應用. 煤田地質與勘探, 2017, 45(6):102 [38] Xiao W, Chen J L, Da H Z, et al. Inversion and analysis of maize biomass in coal mining subsidence area based on UAV images. Trans Chin Soc Agric Mach, 2018, 49(8): 169肖武, 陳佳樂, 笪宏志, 等. 基于無人機影像的采煤沉陷區玉米生物量反演與分析. 農業機械學報, 2018, 49(8):169 [39] Wei C J, Wang Y J, Wang J, et al. The technical research of extracting ground fissure information in mining area with the UAV image. Met Mine, 2012(10): 90魏長婧, 汪云甲, 王堅, 等. 無人機影像提取礦區地裂縫信息技術研究. 金屬礦山, 2012(10):90 [40] Yang C, Su Z A, Ma J, et al. Method of soil erosion rate estimation on mineland dump slope based on unmanned aerial vehicle image. Bull Soil Water Conserv, 2016, 36(6): 126楊超, 蘇正安, 馬菁, 等. 基于無人機影像快速估算礦山排土場邊坡土壤侵蝕速率的方法. 水土保持通報, 2016, 36(6):126 [41] Zhao X T, Hu K, Lu X P, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle. Sci Surv Mapp, 2014, 39(6): 49趙星濤, 胡奎, 盧曉攀, 等. 無人機低空航攝的礦山地質災害精細探測方法. 測繪科學, 2014, 39(6):49 [42] D'Oleire-Oltmanns S, Marzolff I, Peter K D, et al. Unmanned aerial vehicle (UAV) for monitoring soil erosion in morocco. Remote Sens, 2012, 4(11): 3390 doi: 10.3390/rs4113390 [43] He Y R, Chen J Z, Lin Q, et al. Applications in the mining ecological restoration based on aerial imaging and point cloud data. J Cent South Univ Forest Technol, 2017, 37(4): 79何原榮, 陳鑒知, 林泉, 等. 航拍影像與點云數據在礦區生態修復中的應用. 中南林業科技大學學報, 2017, 37(4):79 [44] Hassan-Esfahani L, Torres-Rua A, Jensen A, et al. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens, 2015, 7(3): 2627 doi: 10.3390/rs70302627 [45] Tofani V, Segoni S, Agostini A, et al. Use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci, 2013, 13(2): 299 doi: 10.5194/nhess-13-299-2013 [46] Casagli N, Frodella W, Morelli S, et al. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron Disast, 2017, 4(1): 9 doi: 10.1186/s40677-017-0073-1 [47] Rossi G, Tanteri L, Tofani V, et al. Multitemporal UAV surveys for landslide mapping and characterization. Landslides, 2018, 15(5): 1045 doi: 10.1007/s10346-018-0978-0 [48] Balek J, Blah?t J. A critical evaluation of the use of an inexpensive camera mounted on a recreational unmanned aerial vehicle as a tool for landslide research. Landslides, 2017, 14(3): 1217 doi: 10.1007/s10346-016-0782-7 [49] Mateos R M, Azanon J M, Roldan F J, et al. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides, 2017, 14(2): 743 doi: 10.1007/s10346-016-0723-5 [50] Turner D, Lucieer A, De Jong S M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens, 2015, 7(2): 1736 doi: 10.3390/rs70201736 [51] Peternel T, Kumelj ?, O?tir K, et al. Monitoring the Poto?ka planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides, 2017, 14(1): 395 doi: 10.1007/s10346-016-0759-6 [52] Niethammer U, James M R, Rothmund S, et al. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng Geol, 2012, 128: 2 doi: 10.1016/j.enggeo.2011.03.012 [53] Giordan D, Manconi A, Tannant D D, et al. UAV: Low-cost remote sensing for high-resolution investigation of landslides // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, 2015: 5344 [54] Tang Y, Wang L J, Ma G C, et al. Disaster monitoring and application prospect analysis of the Jinsha River landslide based on “Gaofen+”. Geomat Inform Sci Wuhan Univ, 2019, 44(7): 1082唐堯, 王立娟, 馬國超, 等. 基于“高分+”的金沙江滑坡災情監測與應用前景分析. 武漢大學學報: 信息科學版, 2019, 44(7):1082 [55] Ye W L, Su X, Wei W H, et al. Application of UAV aerial photograph system in emergency rescue and relief for landslide. Bull Surv Mapp, 2017(9): 70葉偉林, 宿星, 魏萬鴻, 等. 無人機航測系統在滑坡應急中的應用. 測繪通報, 2017(9):70 [56] Li W L, Zhu J, Zhu X L, et al. An exploratory analysis method of VR scene in landslide based on UAV remote sensing data. Geomat Inform Sci Wuhan Univ, 2019, 44(7): 1065李維煉, 朱軍, 朱秀麗, 等. 無人機遙感數據支持下滑坡VR場景探索分析方法. 武漢大學學報: 信息科學版, 2019, 44(7):1065 [57] Jia S G, Jin A B, Zhao Y Q. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope. Rock Soil Mech, 2018, 39(3): 1130賈曙光, 金愛兵, 趙怡晴. 無人機攝影測量在高陡邊坡地質調查中的應用. 巖土力學, 2018, 39(3):1130 [58] McLeod T, Samson C, Labrie M, et al. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica, 2013, 67(3): 173 doi: 10.5623/cig2013-036 [59] Wang D, Zou Y, Zhang G Z, et al. Application of photographic technique by unmanned aerial vehicle to dangerous rock exploration. J Chengdu Univ Technol Sci Technol Ed, 2018, 45(6): 754王棟, 鄒楊, 張廣澤, 等. 無人機技術在超高位危巖勘查中的應用. 成都理工大學學報: 自然科學版, 2018, 45(6):754 [60] Liang X, Fan W, Su Y J, et al. Study on early identification technology of concealed geological hazards in vanadium mining area of Qinling. J Catastrophol, 2019, 34(1): 208梁鑫, 范文, 蘇艷軍, 等. 秦嶺釩礦集中開采區隱蔽性地質災害早期識別研究. 災害學, 2019, 34(1):208 [61] Lee S, Choi Y. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosyst Eng, 2016, 19(4): 197 doi: 10.1080/12269328.2016.1162115 [62] Coops N C, Goodbody T R H, Cao L. Four steps to extend drone use in research. Nature, 2019, 572(7770): 433 doi: 10.1038/d41586-019-02474-y [63] UAV Coach. Master list of drone laws (organized by state & country) [EB/OL]. (2019-08-21) [2019-09-04]. https://uavcoach.com/drone-laws/ [64] Sanz-Ablanedo E, Chandler J H, Rodríguez-Pérez J R, et al. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens, 2018, 10(10): 1606 doi: 10.3390/rs10101606 [65] Beretta F, Shibata H, Cordova R, et al. Topographic modelling using UAVs compared with traditional survey methods in mining. REM-Int Eng J, 2018, 71: 463 doi: 10.1590/0370-44672017710074 -