<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電解制備含鈧鋁合金三元相超聲細化機制

劉軒 郭志超 薛濟來 王曾潔 李想 朱常偉 張鵬舉

劉軒, 郭志超, 薛濟來, 王曾潔, 李想, 朱常偉, 張鵬舉. 電解制備含鈧鋁合金三元相超聲細化機制[J]. 工程科學學報, 2020, 42(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.11.28.007
引用本文: 劉軒, 郭志超, 薛濟來, 王曾潔, 李想, 朱常偉, 張鵬舉. 電解制備含鈧鋁合金三元相超聲細化機制[J]. 工程科學學報, 2020, 42(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.11.28.007
LIU Xuan, GUO Zhi-chao, XUE Ji-lai, WANG Zeng-jie, LI Xiang, ZHU Chang-wei, ZHANG Peng-ju. Ultrasonic refining mechanism of ternary phase in Al–Sc based alloys prepared through molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.11.28.007
Citation: LIU Xuan, GUO Zhi-chao, XUE Ji-lai, WANG Zeng-jie, LI Xiang, ZHU Chang-wei, ZHANG Peng-ju. Ultrasonic refining mechanism of ternary phase in Al–Sc based alloys prepared through molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(11): 1465-1472. doi: 10.13374/j.issn2095-9389.2019.11.28.007

電解制備含鈧鋁合金三元相超聲細化機制

doi: 10.13374/j.issn2095-9389.2019.11.28.007
基金項目: 國家自然科學基金資助項目(51704020,51874035);中央高校基本科研業務費資助項目(FRF-TP-19-034A2)
詳細信息
    通訊作者:

    E-mail: jx@ustb.edu.cn

  • 中圖分類號: TF82.1

Ultrasonic refining mechanism of ternary phase in Al–Sc based alloys prepared through molten salt electrolysis

More Information
  • 摘要: 研究采用超聲協同熔鹽電解法制備Al–Si–Sc和Al–Cu–Sc合金,采用光學顯微鏡、掃描電鏡和X射線衍射研究超聲對合金中三元含鈧強化相形貌與尺寸的影響,進而闡明超聲細化機制。研究結果表明,協同超聲促使三元AlSiSc相由粗大菱形管狀轉變為細小實心方棒狀,其尺寸由205減小到40 μm左右;超聲顯著細化三元AlCuSc相團簇尺寸,由約100減小至約30 μm;超聲協同細化機制主要是通過提高形核率細化初生Al3Sc相并促進其均勻分布,進而作為形核發育基底,最終實現三元含鈧相細化;同時超聲也可促進合金溶質均勻分布,避免粗大Al3Sc相析出;超聲細化三元含鈧相機制主要作用于電解后凝固階段。

     

  • 圖  1  超聲協同熔鹽電解設備示意圖[17]

    Figure  1.  Schematic of the equipment of molten salt electrolysis, assisted by ultrasound[17]

    圖  2  超聲協同熔鹽電解Al–Si–Sc合金X射線衍射圖譜

    Figure  2.  XRD patterns of the Al–Si–Sc alloy, prepared by ultrasound-assisted molten salt electrolysis

    圖  3  熔鹽電解Al–Si–Sc合金微觀凝固組織。(a~c)常規電解合金;(d)超聲協同電解合金;(e)超聲協同電解–凝固合金

    Figure  3.  Optical micrographs of the Al–Si–Sc alloy, prepared by molten salt electrolysis: (a?c) MSE; (d) US-MSE; (e) US-MSE/US-SOL

    圖  4  熔鹽電解Al–Si–Sc合金中三元AlSi2Sc2相三維形貌。(a)常規電解合金;(b)圖4(a)中點A掃描能譜圖;(c)超聲協同電解合金;(d)超聲協同電解–凝固合金

    Figure  4.  3D morphologies of the AlSi2Sc2 ternary phase in Al–Si–Sc alloy, prepared by molten salt electrolysis: (a) MSE; (b) EDS analysis of point A in Fig.4(a); (c) US-MSE; (d) US-MSE/US-SOL

    圖  5  超聲協同熔鹽電解Al–Cu–Sc合金X射線衍射圖譜

    Figure  5.  XRD patterns of the Al–Cu–Sc alloy, prepared by ultrasound-assisted molten salt electrolysis

    圖  6  熔鹽電解Al–Cu–Sc合金微觀組織。(a)常規電解合金金相照片;(b)常規電解合金掃描電鏡形貌(插圖為深腐蝕后AlCuSc相);(c~d)圖6(b)中點A和B的能譜圖;(e~f)超聲協同電解–凝固合金金相照片(插圖為深腐蝕后AlCuSc相掃描電鏡形貌)

    Figure  6.  Microstructures of the Al–Cu–Sc alloys prepared by molten salt electrolysis: (a) MSE (OM); (b) MSE (SEM, inserted figure showing the AlCuSc after deep etching); (c–d) EDS analysis of point A and B, respectively in Fig.6(b); (e–f) US-MSE/US-SOL (OM, inserted SEM figure showing the AlCuSc after deep etching)

    圖  7  超聲協同熔鹽電解Al–Cu–Sc合金中三元AlCuSc相掃描電鏡形貌。(a) Al3Sc核心;(b)點A能譜圖分析;(c) AlCuSc外殼;(d)點B能譜圖分析;(e)包覆Al3Sc的AlCuSc相;(f)點C能譜圖分析

    Figure  7.  SEM micrographs of the AlCuSc ternary phase in Al–Cu–Sc alloy, prepared by ultrasound-assisted molten salt electrolysis: (a) Al3Sc nuclei; (b) EDS analysis of point A; (c) AlCuSc shell; (d) EDS analysis of point B; (e) Al3Sc covered by AlCuSc phase; (f) EDS analysis of point A

    圖  8  熔鹽電解二元Al–Sc合金初生Al3Sc相形貌。(a)常規電解合金;(b)超聲協同電解合金;(c~d)超聲協同電解–凝固合金

    Figure  8.  Morphologies of the primary Al3Sc phase in the binary Al–Sc alloy, prepared by molten salt electrolysis: (a) MSE; (b) US-MSE; (c–d) US-MSE/US-SOL

    圖  9  熔鹽電解含Sc鋁合金三元相超聲協同細化機制示意圖

    Figure  9.  Schematic for the ultrasonic refining mechanism of the ternary phase in the Al–Sc based alloys by molten salt electrolysis

    表  1  合金含鈧相尺寸量化結果

    Table  1.   Particle size of the Sc-containing phase in the investigated alloys

    AlloyParticle size /μm
    MSEUS-MSEUS-MSE/US-SOL
    Al–Sc96±3448±1222±7
    Al–Si–Sc205±82228±9640±10
    Al–Cu–Sc94±3630±5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tian S K, Li J Y, Zhang J L, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy. Chin J Eng, 2019, 41(10): 1298

    田少鯤, 李靜媛, 張俊龍, 等. Sc對7056鋁合金組織和性能的影響. 工程科學學報, 2019, 41(10):1298
    [2] Qian Y, Xue J L, Wang Z J, et al. Mechanical properties evaluation of Zr addition in L12-Al3(Sc1–xZrx) using first-principles calculation. JOM, 2016, 68(5): 1293 doi: 10.1007/s11837-016-1880-7
    [3] Riva S, Yusenko K V, Lavery N P, et al. The scandium effect in multicomponent alloys. Int Mater Rev, 2016, 61(3): 203 doi: 10.1080/09506608.2015.1137692
    [4] Czerwinski F. Critical assessment 36: assessing differences between the use of cerium and scandium in aluminium alloying. Mater Sci Technol, 2020, 36(3): 255 doi: 10.1080/02670836.2019.1702775
    [5] Royset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev, 2005, 50(1): 19 doi: 10.1179/174328005X14311
    [6] Li L X, Wang T S, Huang X L, et al. Research progress on the preparation of Al–Sc master alloy by molten salt electrolysis method. Mater Rev, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013

    李亮星, 王濤勝, 黃茜琳, 等. 熔鹽電解法制備鋁鈧中間合金研究進展. 材料導報, 2018, 32(21):3768 doi: 10.11896/j.issn.1005-023X.2018.21.013
    [7] Zhang C, Xue J L, Liu X, et al. Production of aluminum alloys in electrolysis cells based on Hall-Héroult process: a review. Chin J Eng, 2019, 41(7): 835

    張城, 薛濟來, 劉軒, 等. 基于霍爾—埃魯特電解法制備鋁合金技術研究進展. 工程科學學報, 2019, 41(7):835
    [8] Guo R, Cao W L, Zhai X J, et al. Preparation of Al–Sc application alloys by molten salt electrolysis method. Chin J Rare Met, 2008, 32(5): 645 doi: 10.3969/j.issn.0258-7076.2008.05.021

    郭瑞, 曹文亮, 翟秀靜, 等. 熔鹽電解法制備Al–Sc應用合金的工藝研究. 稀有金屬, 2008, 32(5):645 doi: 10.3969/j.issn.0258-7076.2008.05.021
    [9] Harata M, Nakamura T, Yakushiji H, et al. Production of scandium and Al–Sc alloy by metallothermic reduction. Miner Process Extract Metall IMM Trans Sect C, 2008, 117(2): 95
    [10] Liu Q C, Xue J L, Zhu J, et al. Processing Al–Sc alloys at liquid aluminum cathode in KF-AlF3 molten salt. ECS Trans, 2013, 50(11): 483 doi: 10.1149/05011.0483ecst
    [11] Shtefanyuk Y, Mann V, Pingin V, et al. Production of Al–Sc alloy by electrolysis of cryolite-scandium oxide melts // Light Metals 2015. New Jersey: John Wiley & Sons, Inc., 2015: 589
    [12] Tian Z L, Lai Y Q, Zhang K, et al. Preliminary study on preparation of Al–Sc master alloy in Na3AlF6–K3AlF6–AlF3 melt // 7th International Symposium on High-Temperature Metallurgical Processing. New Jersey: John Wiley & Sons, Inc., 2016: 157
    [13] Wang Z J, Guan C Y, Liu Q C, et al. Formation of intermetallic phases in Al–Sc alloys prepared by molten salt electrolysis at elevated temperatures // 6th International Symposium on High-Temperature Metallurgical Processing. New Jersey: John Wiley & Sons, Inc., 2015: 215
    [14] Liu X, Xue J L, Guo Z C, et al. Segregation behaviors of Sc and unique primary Al3Sc in Al–Sc alloys prepared by molten salt electrolysis. J Mater Sci Technol, 2019, 35(7): 1422 doi: 10.1016/j.jmst.2019.02.002
    [15] Liu X, Guo Z C, Xue J L, et al. Effects of synergetic ultrasound on the Sc yield and primary Al3Sc in the Al–Sc alloy prepared by the molten salts electrolysis. Ultrason Sonochem, 2019, 52: 33 doi: 10.1016/j.ultsonch.2018.09.009
    [16] Guo Z C, Liu X, Xue J L. Fabrication of Al-Si-Sc alloy bearing AlSi2Sc2 phase using ultrasonically assisted molten salt electrolysis. J Alloys Compd, 2019, 797: 883 doi: 10.1016/j.jallcom.2019.05.133
    [17] Guo Z C, Liu X, Xue J L, et al. Effects of ultrasound on the microstructure of Al–7Si–Sc alloy prepared via molten salt electrolysis. Chin J Eng, 2019, 41(9): 1135

    郭志超, 劉軒, 薛濟來, 等. 超聲對熔鹽電解法制備Al–7Si–Sc合金組織的影響. 工程科學學報, 2019, 41(9):1135
    [18] Liu X, Guo Z C, Xue J L, et al. Microstructures and mechanical properties of the Al–Cu–Sc alloys prepared by ultrasound-assisted molten salt electrolysis. J Alloys Compd, 2020, 818: 152870 doi: 10.1016/j.jallcom.2019.152870
    [19] Raghavan V. Phase diagram updates and evaluations of the Al–Fe–Ta, Al–Ge–Ni, Al–Li–Zn, Al–Sc–Si and Al–Ta–Ti systems. J Phase Equilib Diff, 2013, 34(4): 328 doi: 10.1007/s11669-013-0239-9
    [20] Pandee P, Gourlay C M, Belyakov S A, et al. AlSi2Sc2 intermetallic formation in Al–7Si–0.3Mg–xSc alloys and their effects on as-cast properties. J Alloys Compd, 2018, 731: 1159 doi: 10.1016/j.jallcom.2017.10.125
    [21] Bo H, Liu L B, Jin Z P. Thermodynamic analysis of Al–Sc, Cu–Sc and Al–Cu–Sc system. J Alloys Compd, 2010, 490(1-2): 318 doi: 10.1016/j.jallcom.2009.10.003
    [22] Raghavan V. Al–Cu–Sc (Aluminum-Copper-Scandium). J Phase Equilib Diff, 2010, 31(6): 554 doi: 10.1007/s11669-010-9771-z
    [23] Dai Y N. Binary Alloys Phase Diagrams. Beijing: Science Press, 2009

    戴永年. 二元合金相圖集. 北京: 科學出版社, 2009
    [24] Liu X, Zhang C, Zhang Z Q, et al. The role of ultrasound in hydrogen removal and microstructure refinement by ultrasonic argon degassing process. Ultrason Sonochem, 2017, 38: 455 doi: 10.1016/j.ultsonch.2017.03.041
    [25] Liu X, Xue J L, Zhao Q, et al. Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process. Ultrason Sonochem, 2018, 41: 600 doi: 10.1016/j.ultsonch.2017.10.026
    [26] Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270

    徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9):1270
    [27] Shang B, Jiang R P, Li X Q, et al. Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states. Chin J Eng, 2019, 41(8): 1007

    商兵, 蔣日鵬, 李曉謙, 等. 超聲外場對不同溫控狀態下ZL205A鋁合金凝固規律的影響. 工程科學學報, 2019, 41(8):1007
    [28] Zhong Z T, Li R Q, Li X Q, et al. Effect of ultrasonication on the microstructure and macrosegregation of a large 2219 aluminum ingot. Chin J Eng, 2017, 39(9): 1347

    鐘貞濤, 李瑞卿, 李曉謙, 等. 超聲處理對2219大規格鋁錠微觀組織與宏觀偏析的影響. 工程科學學報, 2017, 39(9):1347
    [29] Liu X, Zhang J F, Li H Y, et al. Electrical resistivity behaviors of liquid Pb–Sn binary alloy in the presence of ultrasonic field. Ultrasonics, 2015, 55: 6 doi: 10.1016/j.ultras.2014.07.008
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1811
  • HTML全文瀏覽量:  798
  • PDF下載量:  61
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-28
  • 刊出日期:  2020-11-25

目錄

    /

    返回文章
    返回