<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

低濃度拜耳赤泥充填材料制備及水化機理

劉娟紅 周在波 吳愛祥 王貽明

劉娟紅, 周在波, 吳愛祥, 王貽明. 低濃度拜耳赤泥充填材料制備及水化機理[J]. 工程科學學報, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001
引用本文: 劉娟紅, 周在波, 吳愛祥, 王貽明. 低濃度拜耳赤泥充填材料制備及水化機理[J]. 工程科學學報, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001
LIU Juan-hong, ZHOU Zai-bo, WU Ai-xiang, WANG Yi-ming. Preparation and hydration mechanism of low concentration Bayer red mud filling materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001
Citation: LIU Juan-hong, ZHOU Zai-bo, WU Ai-xiang, WANG Yi-ming. Preparation and hydration mechanism of low concentration Bayer red mud filling materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001

低濃度拜耳赤泥充填材料制備及水化機理

doi: 10.13374/j.issn2095-9389.2019.11.25.001
基金項目: 國家自然科學基金重點資助項目(51834001)
詳細信息
    通訊作者:

    E-mail:zhouzaibo@126.com

  • 中圖分類號: TB321

Preparation and hydration mechanism of low concentration Bayer red mud filling materials

More Information
  • 摘要: 針對礦山充填中拜耳法赤泥利用率較低或低濃度赤泥充填材料存在強度低、泌水量高、易收縮等問題,研究粉煤灰添加比例、脫硫石膏、石灰及激發劑對赤泥充填材料早期強度及體積穩定性的影響,采用掃描電子顯微鏡-能譜儀(SEM-EDS)和X射線衍射(XRD)分析手段探討赤泥基充填材料的水化機理。結果表明,脫硫石膏促進鈣礬石的生成,石灰促進粉煤灰火山灰效應,激發劑可以加快赤泥?粉煤灰水化反應進程,三者協同作用提高赤泥充填體強度。充填材料28 d抗壓強度3.35 MPa,且初始及60 min流動度在200 mm以上。微觀實驗表明,硬化體水化產物為鈣礬石、硬柱石、硅鋁酸鹽凝膠類礦物,水化產物通過填充孔隙,提高漿體強度。赤泥基充填材料固體廢棄物利用率達到92%,無泌水,無沉縮,具有較高的經濟價值和環保價值。

     

  • 圖  1  赤泥和粉煤灰礦物分析。1—加藤石;2—鈣霞石;3—碳硅鈣石;4—斜硅鈣石;5—石英;6—斜方鈣沸石;7—重硅鈣石;8—鋁酸三鈣;9—硬石膏

    Figure  1.  Mineral analysis of red mud and fly ash: 1—katoite;2—cancrinite;3—tilleyite;4—belite;5—quartz;6—gismondine;7—reinhardbraunsite;8—tricalcium aluminate;9—anhydrite

    圖  2  赤泥–粉煤灰體系不同齡期抗壓強度

    Figure  2.  Different age compressive strength of red mud?fly ash system

    圖  3  脫硫石膏對強度及流動度影響

    Figure  3.  Effect of desulfurized gypsum on strength and fluidity

    圖  4  石灰對強度和流動度影響

    Figure  4.  Effect of lime on strength and fluidity

    圖  5  不同激發劑摻量對充填材料影響分析

    Figure  5.  Effect of different excitagent contents on filling materials

    圖  6  不同齡期X射線衍射圖。a—氫氧化鈣;b—二水石膏;c—鈣礬石;d—硬柱石;其他礦物標注同圖1

    Figure  6.  XRD patterns of the hydrated pastes at different hydration days: a—calcium hydroxide; b—dihydrate gypsum; c—ettringite, d—lawsonite; other minerals are labeled as shown in Fig.1

    圖  7  不同齡期掃描電鏡圖。(a)G2L2J0養護3 d;(b)G2L2J0養護28 d;(c)G2L2J2養護3 d;(d)G2L2J2養護28 d

    Figure  7.  Different ages of scanning electron microscopy: (a) G2L2J0 curing for 3 d; (b) G2L2J0 curing for 28 d; (c) G2L2J2 curing for 3 d; (d) G2L2J2 curing for 28 d

    圖  8  不同點位能譜分析

    Figure  8.  Different point positions of spectral analysis

    表  1  各材料化學組成分析

    Table  1.   Chemical composition analysis of each material %

    MaterialsSiO2Al2O3Fe2O3K2OMgOCaOMnONa2OTiO2SO3P2O5
    Red mud28.7529.968.010.860.9419.910.054.615.030.940.37
    Fly ash44.4237.934.790.470.295.800.020.161.963.400.43
    Lime2.750.960.880.376.0587.870.860.08
    Desulphurization gypsum14.5512.381.760.290.7829.140.500.7039.360.12
    下載: 導出CSV

    表  2  自流型充填料漿各組分配比

    Table  2.   Designed proportion of self-flowing filling slurry

    NumberRed mud∶fly ash∶desulfurization
    gypsum∶lime∶activator
    Solid content / %
    R3F73∶7∶/∶/∶/60
    R4F64∶6∶/∶/∶/60
    R5F55∶5∶/∶/∶/60
    R6F46∶4∶/∶/∶/60
    G1L2J04∶6∶0.6∶0.9∶/58
    G2L2J04∶6∶0.9∶0.9∶/58
    G3L2J04∶6∶1.2∶0.9∶/58
    G2L1J04∶6∶0.9∶0.7∶/58
    G2L3J04∶6∶0.9∶1.1∶/58
    G2L2J14∶6∶0.9∶0.9∶0.158
    G2L2J24∶6∶0.9∶0.9∶0.258
    G2L2J34∶6∶0.9∶0.9∶0.358
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Khairul M A, Zanganeh J, Moghtaderi B. The composition, recycling and utilization of Bayer red mud. Resour Conserv Recycl, 2019, 141: 483 doi: 10.1016/j.resconrec.2018.11.006
    [2] Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud–coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438

    劉曉明, 唐彬文, 尹海峰, 等. 赤泥–煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438
    [3] Liu C L, Ma S H, Zheng S L, et al. Combined treatment of red mud and coal fly ash by a hydro-chemical process. Hydrometallurgy, 2018, 175: 224 doi: 10.1016/j.hydromet.2017.11.005
    [4] Liu Z B, Li H X. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy, 2015, 155: 29 doi: 10.1016/j.hydromet.2015.03.018
    [5] Wang L, Chen L, Tsang D C W, et al. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environ Int, 2019, 133: 105247 doi: 10.1016/j.envint.2019.105247
    [6] Liu X, Han Y X, He F Y, et al. Research status on hazards and comprehensive utilization of red mud. Met Mine, 2018, 47(11): 7

    柳曉, 韓躍新, 何發鈺, 等. 赤泥的危害及其綜合利用研究現狀. 金屬礦山, 2018, 47(11):7
    [7] Liu S H, Guan X M, Zhang S S, et al. Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceram Int, 2017, 43(15): 13004 doi: 10.1016/j.ceramint.2017.07.036
    [8] Lu G Z, Zhang T A, Ma L N, et al. Utilization of Bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy, 2019, 188: 248 doi: 10.1016/j.hydromet.2019.05.018
    [9] Liu Y, Ni W, Huang X Y, et al. Characteristics of hydration and hardening red mud of Bayer process in carbide slag-flue desulfurization gypsum system. Mater Rev, 2016, 30(14): 120

    劉英, 倪文, 黃曉燕, 等. 拜耳法低鐵赤泥在電石渣-脫硫石膏體系中的水化硬化特性. 材料導報, 2016, 30(14):120
    [10] Li Y C, Min X B, Ke Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manage, 2019, 83: 202 doi: 10.1016/j.wasman.2018.11.019
    [11] Hu W, Nie Q K, Huang B S, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J Clean Prod, 2018, 186: 799 doi: 10.1016/j.jclepro.2018.03.086
    [12] Gao S J, Ni W, Zhu L P, et al. Effect of gypsum on strength performance of cemented backfilling materials of red mud-slag system. J Cent South Univ Sci Technol, 2013, 44(6): 2259

    高術杰, 倪文, 祝麗萍, 等. 脫硫石膏對赤泥–礦渣膠結充填料強度性能的影響. 中南大學學報: 自然科學版, 2013, 44(6):2259
    [13] Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640

    陳蛟龍, 張娜, 李恒, 等. 赤泥基似膏體充填材料水化特性研究. 工程科學學報, 2017, 39(11):1640
    [14] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [15] Hou C, Zhu W C, Yan B X, et al. Influence of binder content on temperature and internal strain evolution of early age cemented tailings backfill. Construct Build Mater, 2018, 189: 585 doi: 10.1016/j.conbuildmat.2018.09.032
    [16] Liu J H, Wu R D, Wu A X, et al. Bleeding characteristics and improving mechanism of self-flowing tailings filling slurry with low concentration. Minerals, 2017, 7(8): 131 doi: 10.3390/min7080131
    [17] Nath S K, Kumar S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Construct Build Mater, 2020, 233: 117294 doi: 10.1016/j.conbuildmat.2019.117294
    [18] Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud–slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759
    [19] Department of inorganic chemistry, Dalian University of Technology. Inorganic Chemistry. 5th Ed. Beijing: Higher Education Press, 2006

    大連理工大學無機化學教研室. 無機化學. 5版. 北京: 高等教育出版社, 2006
    [20] Zhou X X, Shen J M. Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer. Construct Build Mater, 2020, 242: 118168 doi: 10.1016/j.conbuildmat.2020.118168
    [21] Xiao L G, Zhang H L. Influence of new composite early strength agent on mechanical properties of concrete(mortar) and its mechanism analysis. Bull Chin Ceram Soc, 2018, 37(7): 2115

    肖力光, 張洪磊. 新型復合早強劑對混凝土(砂漿)力學性能的影響及機理分析. 硅酸鹽通報, 2018, 37(7):2115
    [22] Qiu Y B, Wang Q P. Study on the pozzolanic activity of fly ash activated by NaSO4. Mater Rev, 2013, 27(12): 121 doi: 10.3969/j.issn.1005-023X.2013.12.029

    邱軼兵, 王慶平. NaSO4激發粉煤灰火山灰活性研究. 材料導報, 2013, 27(12):121 doi: 10.3969/j.issn.1005-023X.2013.12.029
    [23] Liu P F, Lan M Z, Xiang B F, et al. Influence of hydroxypropyl methyl cellulose ether on properties of machine spraying mortar. New Build Mater, 2016, 43(7): 49 doi: 10.3969/j.issn.1001-702X.2016.07.013

    劉鵬飛, 蘭明章, 項斌峰, 等. 羥丙基甲基纖維素醚對機噴水泥砂漿性能的影響. 新型建筑材料, 2016, 43(7):49 doi: 10.3969/j.issn.1001-702X.2016.07.013
    [24] Jiang G Z, Wu A X, Wang Y M, et al. Effect of compound activator on copper slag activity and preparation of filling materials. Chin J Eng, 2017, 39(9): 1305

    姜關照, 吳愛祥, 王貽明, 等. 復合激發劑對銅爐渣活性影響及充填材料制備. 工程科學學報, 2017, 39(9):1305
    [25] Keeley P M, Rowson N A, Johnson T P, et al. The effect of the extent of polymerization of a slag structure on the strength of alkali-activated slag binders. Int J Miner Process, 2017, 164: 37 doi: 10.1016/j.minpro.2017.05.007
    [26] Kwan S, La Rosa-Thompson J, Grutzeck M W. Structure and phase relations of aluminum-substituted calcium silicate hydrate. J Am Ceram Soc, 1996, 79(4): 967 doi: 10.1111/j.1151-2916.1996.tb08533.x
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  1871
  • HTML全文瀏覽量:  1249
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-25
  • 刊出日期:  2020-11-25

目錄

    /

    返回文章
    返回